| Peer-Reviewed

Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation

Received: 12 June 2016     Published: 12 June 2016
Views:       Downloads:
Abstract

Convection-diffusion equation have a wide range of applications in many practical engineering problems, such as magnetic confinement fusion problems, heat transfer, particle diffusion. Traditional solutionof convection-diffusion equation in magnetic confinement fusion is Crank-Nicolson scheme. This paper presents a new numerical solution of one-dimensional steady-containing source convection diffusion equation high accuracy difference schemes O(t2+h4), which proved to be unconditionally stable using Fourier analysis, numerical experiments show the accuracy and robustness of this format, this scheme has a higher accuracy.

Published in Science Discovery (Volume 4, Issue 2)
DOI 10.11648/j.sd.20160402.27
Page(s) 156-160
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Convection-Diffusion Equation, Compact Difference, High Order

References
[1] 王慧蓉.求解对流扩散方程的紧致二级四阶Runge-Kutta差分格式[J].云南民族大学学报:自然科学版,2015,24(5):382-385。
[2] 杨志峰.含源汇定常对流扩散问题紧致四阶差分格式[J].科学通报,1991,38(2):113-116。
[3] 孙志忠.偏微分方程数值解法[M].北京:科学出版社,2005。
[4] 钱凌志,顾海波.高阶紧致差分格式结合外推技巧求解对流扩散方程[J].山东大学学报:理学版,2011,46(12):39-43。
[5] 张阳.线性对流占优扩散问题的交替方向差分流线扩散法[J].计算数学,2007,29(1):49-66。
[6] 何文平.求解对流扩散方程的四中差分格式的比较[J].物理学报,2004.(10):3258-3264。
[7] 王倩倩,李鑫,孙启航.一维变系数对流扩散方程的一个紧致差分格式.江苏师范大学学报:自然科学版,2013,31(2):21-24。
[8] 王彩华.一维对流扩散方程的一类新型高精度紧致差分格式[J].水动力学研究与进展:A辑,2004,(19):655。
[9] 戴嘉尊.微分方程数值解法[M].2版.南京:东南大学出版社,2004。
[10] Patanker S V. Numerical heat transfer and fluid flow [M]. New York: Hemisphere Publishing Corporation, 1980.
Cite This Article
  • APA Style

    Rongfei Wang, Weihua Wang, Jinhong Yang. (2016). Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation. Science Discovery, 4(2), 156-160. https://doi.org/10.11648/j.sd.20160402.27

    Copy | Download

    ACS Style

    Rongfei Wang; Weihua Wang; Jinhong Yang. Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation. Sci. Discov. 2016, 4(2), 156-160. doi: 10.11648/j.sd.20160402.27

    Copy | Download

    AMA Style

    Rongfei Wang, Weihua Wang, Jinhong Yang. Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation. Sci Discov. 2016;4(2):156-160. doi: 10.11648/j.sd.20160402.27

    Copy | Download

  • @article{10.11648/j.sd.20160402.27,
      author = {Rongfei Wang and Weihua Wang and Jinhong Yang},
      title = {Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation},
      journal = {Science Discovery},
      volume = {4},
      number = {2},
      pages = {156-160},
      doi = {10.11648/j.sd.20160402.27},
      url = {https://doi.org/10.11648/j.sd.20160402.27},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20160402.27},
      abstract = {Convection-diffusion equation have a wide range of applications in many practical engineering problems, such as magnetic confinement fusion problems, heat transfer, particle diffusion. Traditional solutionof convection-diffusion equation in magnetic confinement fusion is Crank-Nicolson scheme. This paper presents a new numerical solution of one-dimensional steady-containing source convection diffusion equation high accuracy difference schemes O(t2+h4), which proved to be unconditionally stable using Fourier analysis, numerical experiments show the accuracy and robustness of this format, this scheme has a higher accuracy.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Containing High Order Compact Scheme Source of Steady Convection-Diffusion Equation
    AU  - Rongfei Wang
    AU  - Weihua Wang
    AU  - Jinhong Yang
    Y1  - 2016/06/12
    PY  - 2016
    N1  - https://doi.org/10.11648/j.sd.20160402.27
    DO  - 10.11648/j.sd.20160402.27
    T2  - Science Discovery
    JF  - Science Discovery
    JO  - Science Discovery
    SP  - 156
    EP  - 160
    PB  - Science Publishing Group
    SN  - 2331-0650
    UR  - https://doi.org/10.11648/j.sd.20160402.27
    AB  - Convection-diffusion equation have a wide range of applications in many practical engineering problems, such as magnetic confinement fusion problems, heat transfer, particle diffusion. Traditional solutionof convection-diffusion equation in magnetic confinement fusion is Crank-Nicolson scheme. This paper presents a new numerical solution of one-dimensional steady-containing source convection diffusion equation high accuracy difference schemes O(t2+h4), which proved to be unconditionally stable using Fourier analysis, numerical experiments show the accuracy and robustness of this format, this scheme has a higher accuracy.
    VL  - 4
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Institute of Applied Physics, Army Officer Acadamy, Hefei, Anhui

  • Institute of Applied Physics, Army Officer Acadamy, Hefei, Anhui

  • Institute of Applied Physics, Army Officer Acadamy, Hefei, Anhui

  • Sections