As a family of small non-coding RNAs, microRNAs (miRNAs) negatively modulate gene expression via directly targeting mRNAs in a sequence-specific pattern. Accumulated evidences have indicated that miRNAs involved in erythroid differentiation. Some experimental systems used for study the association of miRNAs with erythroid differentiation: 1) embryonic stem cells (hESCs) forced to erythropoiesis, 2) hematopoietic progenitor cells and erythroid-like cell lines induced to erythropoiesis by hypoxia and chemical substances, 3) and in vivo mice, zebrafish embryo systems. Based on the literatures, miR-451, miR-144, miR-486, miR-126-3p, miR-107, miR-199b-5p, miR-362, miR-188, miR-210, miR-125a, miR-146b, miR-22, miR-23a / miR-27a / miR-24, miR-16-2, miR-34a exhibit promotion role in erythropoiesis, while, miR-218, miR-320a, miR-221 / 222, miR-433, miR-200a, miR-223, miR-150, miR-34a-5p, miR-124, miR-Let-7d, miR-376a, miR-155, miR-126 / 126*, miR-103, miR-15a, miR-30a-5p, miR-26a-5p, miR-669m, miR-9 show suppression role in erythropoiesis. Nonetheless, the clear functional role of miR-24 is controversial in erythropoiesis. This article summarized the relationships between miRNAs and erythroid differentiation as well as potential target genes and action mechanisms. These discovered erythroid associated miRNAs stand for the starting point to develop novel approaches for miRNA treatment, miRNAs to be used as novel potential biomarker and target for diagnosis, therapeutics, prognosis of certain blood diseases, leading to promising prospects in blood diseases therapeutics.
Published in | Science Journal of Clinical Medicine (Volume 10, Issue 2) |
DOI | 10.11648/j.sjcm.20211002.11 |
Page(s) | 16-29 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2021. Published by Science Publishing Group |
miRNAs, Erythroid Differentiation, Target Genes
[1] | Fang YX, Gao WQ. Roles of microRNAs during prostatic tumorigenesis and tumor progression. Oncogene. 2014; 33 (2): 135-147. |
[2] | Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006; 6 (11): 857-866. |
[3] | Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136 (2): 215-233. |
[4] | Zimmerman AL, Wu S. MicroRNAs, cancer and cancer stem cells. Cancer Lett. 2011; 300 (1): 10-9. |
[5] | Callegari E, Gramantieri L, Domenicali M, D'Abundo L, Sabbioni S, Negrini M. MicroRNAs in liver cancer: a model for investigating pathogenesis and novel therapeutic approaches. Cell Death Differ. 2015; 22 (1): 46-57. |
[6] | Undi RB, Kandi R, Gutti RK. MicroRNAs as haematopoiesis regulators. Adv Hematol. 2013: 695754. |
[7] | Zhao CH, Sun XL, Li LM. Biogenesis and function of extracellular miRNAs. ExRNA. 2019; 1 (1): 1-9. |
[8] | Fatica A, Rosa A, Fazi F, Ballarino M, Morlando M, De Angelis FG, et al. MicroRNAs and hematopoietic differentiation. Cold Spring Harb Symp Quant Biol. 2006; 71 (1): 205-210. |
[9] | Kouhkan F, Hafizi M, Mobarra N, Mossahebi-Mohammadi M, Mohammadi S, Behmanesh M, et al. MiRNAs: a new method for erythroid differentiation of hematopoietic stem cells without the presence of growth factors. Appl Biochem Biotechnol. 2014; 172 (4): 2055-2069. |
[10] | Eggold JT, Rankin EB. Erythropoiesis, EPO, macrophages, and bone. Bone. 2019; 119: 36-41. |
[11] | Vinchi F. Erythroid differentiation: a matter of proteome remodeling. Hemasphere. 2018; 2 (1): e26. |
[12] | Cullen BR. Transcription and processing of human microRNA precursors. Molecular Cell. 2004; 16 (6): 861-865. |
[13] | Deb B, Uddin A, Chakraborty S. miRNAs and ovarian cancer: An overview. J Cell Physiol. 2018; 233 (5): 3846-3854. |
[14] | Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T. Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun. 2007; 364 (3): 509-514. |
[15] | Svasti S, Masaki S, Penglong T, Abe Y, Winichagoon P, Fucharoen S, et al. Expression of microRNA-451 in normal and thalassemic erythropoiesis. Ann Hematol. 2010; 89 (10): 953-958. |
[16] | Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, et al. The miR-144 / 451 locus is required for erythroid homeostasis. J Exp Med. 2010; 207 (7): 1351-1358. |
[17] | Yu DN, Santos CO, Zhao GW, Jiang J, Amigo JD, Khandros E, et al. MiR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes Dev. 2010; 24 (15): 1620-1633. |
[18] | Kim MJ, Tan YS, Cheng WC, Kingsbury TJ, Heimfeld S, Civin1 CI. MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br J Haematol. 2015; 168 (4): 583-597. |
[19] | Bruchova-Votavova H, Yoon D, Prchal JT. MiR-451 enhances erythroid differentiation in K562 cells. Leuk Lymphoma. 2010; 51 (4): 686-693. |
[20] | Zhan M, Miller CP, Papayannopoulou T, Stamatoyannopoulos G, Song CH. MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol. 2007; 35 (7): 1015-1025. |
[21] | Liang BX, Chen YC, Yuan WX, Qin F, Zhang Q, Deng N, et al. Down-regulation of miRNA-451a and miRNA-486-5p involved in benzene-induced inhibition on erythroid cell differentiation in vitro and in vivo. Arch Toxicol. 2018; 92 (1): 259-272. |
[22] | Kouhkan F, Soleimani M, Daliri M, Behmanesh M, Mobarra N, Mossahebi-Mohammadi M, et al. MiR-451 up-regulation, induce erythroid differentiation of CD133+cells independent of cytokine cocktails. Iran J Basic Med Sci. 2013; 16 (6): 756-763. |
[23] | Kohrs N, Kolodziej S, Kuvardina ON, Herglotz J, Yillah J, Herkt S, et al. MiR144 / 451 expression is repressed by RUNX1 during megakaryopoiesis and disturbed by RUNX1 / ETO. PLoS Genet. 2016; 12 (3): e1005946. |
[24] | Pase L, Layton JE, Kloosterman WP, Carradice D, Waterhouse PM, Lieschke GJ. MiR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood. 2009; 113 (8): 1794-1804. |
[25] | Wang LS, Li L, Li L, Chu S, Shiang KD, Li M, et al. MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood. 2015; 125 (8): 1302-1313. |
[26] | Sun Y, Xiao FJ, Zhang YK, Sun HY, Wang H, Wang LS. Dynamic expression of microRNA-486 during erythroid diferentiation of hematopoietic cells. Milit Med. 2013; 37 (4): 263-270. |
[27] | Shi XF, Wang H, Kong FX, Xu QQ, Xiao FJ, Yang YF, et al. Exosomal miR-486 regulates hypoxia-induced erythroid differentiation of erythroleukemia cells through targeting Sirt1. Exp Cell Res. 2017; 351 (1): 74-81.5737. |
[28] | Kosaka N, Sugiura K, Yamamoto Y, Yoshioka Y, Miyazaki H, Komatsu N, et al. Identification of erythropoietin-induced microRNAs in haematopoietic cells during erythroid differentiation. Br J Haematol. 2008; 142 (2): 293-300. |
[29] | Fabbri E, Manicardi A, Tedeschi T, Sforza S, Bianchi N, Brognara E, et al. Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). Chem Med Chem. 2011; 6 (12): 2192-2202. |
[30] | Bianchi N, Zuccato C, Lampronti I, Borgatti M, Gambari R. Expression of miR-210 during erythroid differentiation and induction of γ-globin gene expression. BMB Rep. 2009; 42 (8): 493-499. |
[31] | Bavelloni A, Poli A, Fiume R, Blalock W, Matteucci A, Ramazzotti G, et al. PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells. Oncotarget. 2014; 5 (12): 4222-4231. |
[32] | Sarakul O, Vattanaviboon P, Tanaka Y, Fucharoen S, Abe Y, Svasti S, et al. Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210. Blood Cells Mol Dis. 2013; 51 (2): 98-103. |
[33] | Ruan J, Liu XG, Xiong XD, Zhang CL, Li JB, Zheng HL, et al. MiR 107 promotes the erythroid differentiation of leukemia cells via the downregulation of Cacna2d1. Mol Med Rep. 2015; 11 (2): 1334-1339. |
[34] | Wang GY, Zhao R, Zhao XS, Chen X, Wang D, Jin YJ, et al. MicroRNA 181a enhances the chemotherapeutic sensitivity of chronic myeloid leukemia to imatinib. Oncol Lett. 2015; 10 (5): 2835-2841. |
[35] | Li YX, Bai H, Zhang ZZ, li WH, Dong L, Wei XJ, et al. The up-Regulation of miR-199b-5p in erythroid differentiation is associated with GATA-1 and NF-E2. Mol Cells. 2014; 37 (3): 213-219. |
[36] | Ganan-Gomez I, Wei Y, Yang H, Pierce S, Bueso-Ramos C, Calin G, et al. Overexpression of miR-125a in myelodysplastic syndrome CD34+ Cells modulates NF-kB activation and enhances erythroid differentiation arrest. PLoS One. 2014; 9 (4): e93404. |
[37] | Zhai PF, Wang F, Su R, Lin HS, Jiang CL, Yang GH, et al. The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Bio Chem. 2014; 289 (33): 22600-22613. |
[38] | Kadmon CS, Landers CT, Li HS, Watowich SS, Rodriguez A, King KY. MicroRNA-22 controls interferon alpha production and erythroid maturation in response to infectious stress in mice. Exp Hematol. 2017; 56: 7-15. |
[39] | Zhu Y, Wang DS, Wang F, Li TT, Dong L, Liu HW, et al. A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res. 2013; 41 (7): 4129-4143. |
[40] | Ma YN, Wang B, Jiang FB, Wang DS, Liu HW, Yan YM, et al. A feedback loop consisting of microRNA 23a / 27a and the β-like globin suppressors KLF3 and SP1 regulates globin gene expression. Mol Cell Biol. 2013; 33 (20): 3994-4007. |
[41] | Wang DS, Si S, Wang Q, Luo GC, Du Q, Liang Q, et al. MiR-27a promotes hemin-induced erythroid differentiation of K562 Cells by targeting CDC25B. Cell Physiol Biochem. 2018; 46 (1): 365-374. |
[42] | Wang F, Zhu Y, Guo LH, Dong L, Liu HW, Yin HX, et al. A regulatory circuit comprising GATA1 / 2 switch and microRNA-27a / 24 promotes erythropoiesis. Nucleic Acids Res. 2014; 42 (1): 442-457. |
[43] | Guglielmelli P, Tozzi L, Bogani C, Iacobucci I, Ponziani V, Martinelli G, et al. Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood. 2011; 117 (25): 6923-6927. |
[44] | Ward CM, Li B, Pace BS. Stable expression of miR-34a mediates fetal hemoglobin induction in K562 cells. Exp Biol Med. 2016; 241 (7): 719-729. |
[45] | Li YM, Liu SG, Sun HY, Yang YD, Qi HY, Ding N, et al. MiR-218 inhibits erythroid differentiation and alters iron metabolism by targeting ALAS2 in K562 Cells. Int J Mol Sci. 2015; 16 (12): 28156-28168. |
[46] | Mittal SPK, Mathai J, Kulkarni AP, Pal JK, Chattopadhyay S. MiR-320a regulates erythroid differentiation through MAR binding protein SMAR1. Int J Biochem Cell Biol. 2013; 45 (11): 2519-2529. |
[47] | Jiang L, Wang X, Wang Y, Chen X. Quantitative proteomics reveals that miR-222 inhibits erythroid differentiation by targeting BLVRA and CRKL. Cell Biochem Funct. 2018; 36 (2): 95-105. |
[48] | Ma YN, Chen MT, Wu ZK, Zhao HL, Yu HC, Yu J, et al. Emodin can induce K562 cells to erythroid differentiation and improve the expression of globin genes. Mol Cell Biochem. 2013; 382 (1-2): 127-136. |
[49] | Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci. 2005; 102 (50): 18081-18086. |
[50] | Lin X, Rice KL, Buzzai M, Hexner E, Costa FF, Kilpivaara O, et al. MiR-433 is aberrantly expressed in myeloproliferative neoplasms and suppresses hematopoietic cell growth and differentiation. Leukemia. 2013; 27 (2): 344-352. |
[51] | Li YM, Zhang Q, Du ZL, Lu ZC, Liu S, Zhang L, et al. MicroRNA 200a inhibits erythroid differentiation by targeting PDCD4 and THRB. Br J Haematol. 2017; 176 (1): 50-64. |
[52] | Felli N, Pedini F, Romania P, Biffoni M, Morsilli O, Castelli G, et al. MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica. 2009; 94 (4): 479-486. |
[53] | Yuan JY, Wang F, Yu J, Yang GH, Liu XL, Zhang JW. MicroRNA-223 reversibly regulates erythroid and megakaryocytic differentiation of K562 cells. J Cell Mol Med. 2009; 13 (11-12): 4551-4559. |
[54] | Sun ZW, Wang Y, Han X, Zhao XL, Peng YL, Li YS, et al. MiR-150 inhibits terminal erythroid proliferation and differentiation. Oncotarget. 2015; 6 (40): 43033-43077. |
[55] | Zhao HL, Bu WJ, Li YX, Zhai D, Wen X, Yu J. MiR-34a-5p inhibits the erythroid differentiation of K562 cells. Basic Clin Med. 2015; 35 (2): 167-173. |
[56] | Wang F, Song W, Zhao HM, Ma YN, Li YX, Zhai D, et al. The RNA-binding protein QKI5 regulates primary miR-124-1 processing via a distal RNA motif during erythropoiesis. Cell Res. 2017; 27 (3): 416-439. |
[57] | Andolfo I, De Falco L, Asci R, Russo R, Colucci S, Gorrese M, et al. Regulation of divalent metal transporter 1 (DMT) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica. 2010; 95 (8): 1244-1252. |
[58] | Wang F, Yu J, Yang GH, Wang XS, Zhang JW. Regulation of erythroid differentiation by miR-376a and its targets. Cell Res. 2011; 21 (8): 1196-1209. |
[59] | Yang GH, Wang F, Yu J, Wang XS, Yuan JY, Zhang JW. MicroRNAs are involved in erythroid differentiation control. J Cell Biochem. 2009; 107 (3): 548-556. |
[60] | Huang XQ, Gschweng E, Handel BV, Cheng DH, Mikkola HK, Witte ON. Regulated expression of microRNAs-126 / 126* inhibits erythropoiesis from human embryonic stem cells. Blood. 2011; 117 (7): 2157-2165. |
[61] | Zhao HW, Kalota A, Jin SH, Gewirtz AM. The c-MYB proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood. 2009; 113 (3): 505-516. |
[62] | Kronstein-Wiedemann R, Thiel J, Milanov P, Pasini E, Tonn T. Role of miR-30a-5p and miR-26a-5p in induction of terminal differentiation in human K562 erythroleukemia cells. Cytotherapy. 2020; 22 (5): S191. |
[63] | Kotaki R, Kawashima M, Yamaguchi A, Suzuki N, Koyama-Nasu R, Ogiya D, et al. Overexpression of miR-669m inhibits erythroblast differentiation. Sci Rep. 2020; 10 (1): 13554. |
[64] | Zhang YY, Li LP, Yu CJ, Senyuk V, Li FX, Quigley JG, Zhu TY, Qian ZJ. miR-9 upregulation leads to inhibition of erythropoiesis by repressing FoxO3. Sci Rep. 2018; 8 (1): 6519. |
[65] | Wang Q, Huang Z, Xue HL, Jin CC, Ju XL, Han JD, et al. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood. 2008; 111 (2): 588-595. |
[66] | Ma YN, Wang B, Gong B, Wang F, Zhao HL, Zhang JW, et al. MiR-24 improves β-like globin gene expression through targeting Sp1. Chin J Biotech. 2013; 29 (7): 946-954. |
APA Style
Chunmei Guo, Xinli Li, Shuqing Liu, Mingzhong Sun. (2021). MicroRNAs as Potential Markers Involved in Erythroid Differentiation: A Systematic Literature Review. Science Journal of Clinical Medicine, 10(2), 16-29. https://doi.org/10.11648/j.sjcm.20211002.11
ACS Style
Chunmei Guo; Xinli Li; Shuqing Liu; Mingzhong Sun. MicroRNAs as Potential Markers Involved in Erythroid Differentiation: A Systematic Literature Review. Sci. J. Clin. Med. 2021, 10(2), 16-29. doi: 10.11648/j.sjcm.20211002.11
AMA Style
Chunmei Guo, Xinli Li, Shuqing Liu, Mingzhong Sun. MicroRNAs as Potential Markers Involved in Erythroid Differentiation: A Systematic Literature Review. Sci J Clin Med. 2021;10(2):16-29. doi: 10.11648/j.sjcm.20211002.11
@article{10.11648/j.sjcm.20211002.11, author = {Chunmei Guo and Xinli Li and Shuqing Liu and Mingzhong Sun}, title = {MicroRNAs as Potential Markers Involved in Erythroid Differentiation: A Systematic Literature Review}, journal = {Science Journal of Clinical Medicine}, volume = {10}, number = {2}, pages = {16-29}, doi = {10.11648/j.sjcm.20211002.11}, url = {https://doi.org/10.11648/j.sjcm.20211002.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjcm.20211002.11}, abstract = {As a family of small non-coding RNAs, microRNAs (miRNAs) negatively modulate gene expression via directly targeting mRNAs in a sequence-specific pattern. Accumulated evidences have indicated that miRNAs involved in erythroid differentiation. Some experimental systems used for study the association of miRNAs with erythroid differentiation: 1) embryonic stem cells (hESCs) forced to erythropoiesis, 2) hematopoietic progenitor cells and erythroid-like cell lines induced to erythropoiesis by hypoxia and chemical substances, 3) and in vivo mice, zebrafish embryo systems. Based on the literatures, miR-451, miR-144, miR-486, miR-126-3p, miR-107, miR-199b-5p, miR-362, miR-188, miR-210, miR-125a, miR-146b, miR-22, miR-23a / miR-27a / miR-24, miR-16-2, miR-34a exhibit promotion role in erythropoiesis, while, miR-218, miR-320a, miR-221 / 222, miR-433, miR-200a, miR-223, miR-150, miR-34a-5p, miR-124, miR-Let-7d, miR-376a, miR-155, miR-126 / 126*, miR-103, miR-15a, miR-30a-5p, miR-26a-5p, miR-669m, miR-9 show suppression role in erythropoiesis. Nonetheless, the clear functional role of miR-24 is controversial in erythropoiesis. This article summarized the relationships between miRNAs and erythroid differentiation as well as potential target genes and action mechanisms. These discovered erythroid associated miRNAs stand for the starting point to develop novel approaches for miRNA treatment, miRNAs to be used as novel potential biomarker and target for diagnosis, therapeutics, prognosis of certain blood diseases, leading to promising prospects in blood diseases therapeutics.}, year = {2021} }
TY - JOUR T1 - MicroRNAs as Potential Markers Involved in Erythroid Differentiation: A Systematic Literature Review AU - Chunmei Guo AU - Xinli Li AU - Shuqing Liu AU - Mingzhong Sun Y1 - 2021/04/23 PY - 2021 N1 - https://doi.org/10.11648/j.sjcm.20211002.11 DO - 10.11648/j.sjcm.20211002.11 T2 - Science Journal of Clinical Medicine JF - Science Journal of Clinical Medicine JO - Science Journal of Clinical Medicine SP - 16 EP - 29 PB - Science Publishing Group SN - 2327-2732 UR - https://doi.org/10.11648/j.sjcm.20211002.11 AB - As a family of small non-coding RNAs, microRNAs (miRNAs) negatively modulate gene expression via directly targeting mRNAs in a sequence-specific pattern. Accumulated evidences have indicated that miRNAs involved in erythroid differentiation. Some experimental systems used for study the association of miRNAs with erythroid differentiation: 1) embryonic stem cells (hESCs) forced to erythropoiesis, 2) hematopoietic progenitor cells and erythroid-like cell lines induced to erythropoiesis by hypoxia and chemical substances, 3) and in vivo mice, zebrafish embryo systems. Based on the literatures, miR-451, miR-144, miR-486, miR-126-3p, miR-107, miR-199b-5p, miR-362, miR-188, miR-210, miR-125a, miR-146b, miR-22, miR-23a / miR-27a / miR-24, miR-16-2, miR-34a exhibit promotion role in erythropoiesis, while, miR-218, miR-320a, miR-221 / 222, miR-433, miR-200a, miR-223, miR-150, miR-34a-5p, miR-124, miR-Let-7d, miR-376a, miR-155, miR-126 / 126*, miR-103, miR-15a, miR-30a-5p, miR-26a-5p, miR-669m, miR-9 show suppression role in erythropoiesis. Nonetheless, the clear functional role of miR-24 is controversial in erythropoiesis. This article summarized the relationships between miRNAs and erythroid differentiation as well as potential target genes and action mechanisms. These discovered erythroid associated miRNAs stand for the starting point to develop novel approaches for miRNA treatment, miRNAs to be used as novel potential biomarker and target for diagnosis, therapeutics, prognosis of certain blood diseases, leading to promising prospects in blood diseases therapeutics. VL - 10 IS - 2 ER -