| Peer-Reviewed

Aging Effects in Psychophysical Foveal Light Detection Thresholds

Published: 20 February 2013
Views:       Downloads:
Abstract

Foveal light detection sensitivity was evaluated in 348 volunteers covering a large age range using an automated perimetry performed in the Humphrey Field Analyzer II. Foveal sensitivity was measured using the Humphrey’s 4–2 bracketing strategy with a 30 dB initial stimulus intensity, at an inferior visual field location, a 0.431 (4mm2, viewed at 30 cm; Goldmann III) spot of white light is presented on a 10 cd/m2 white background. The sensitivity measurement was performed monocularly in both eyes randomly chosen. Our results showed a negative moderate correlation between age and the light sensitivity detection of OD (r= -0.5591; p< 0.001) and OS (r= -0.6021, p< 0.001). A moderate positive correlation was ob-tained between the light sensitivity of the two eyes (r= -0.5986; p< 0.001). We conclude reporting aging effect in the foveal sensitivity light detection suggesting functional decrease in perceptual function guide by developmental changes. Tolerance limits for normative purposes were measured.

Published in Psychology and Behavioral Sciences (Volume 2, Issue 1)
DOI 10.11648/j.pbs.20130201.13
Page(s) 14-19
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2013. Published by Science Publishing Group

Keywords

Foveal Sensitivity; Visual Perception; Clinical Psychophysics; Aging; Automated Perimetry

References
[1] H.Bebie, F.Fankhauser, J.Spahr. Static perimetry: strategies, Acta Ophthalmol. (Copenh) 54 (1976) 325-338.
[2] M.A.Cascairo, W.C.Stewart, S.E.Sutherland. Influence of missed catch trials on the visual field in normal subjects, Graefes Arch. Clin. Exp. Ophthalmol. 229 (1991) 437-441.
[3] F.Fankhauser. Influence of missed catch trials on the visual field in normal subjects, Graefes Arch. Clin. Exp. Ophthalmol. 231 (1993) 58-59.
[4] D.C.Hood. Relating retinal nerve fiber thickness to behavioral sensitivity in patients with glaucoma: application of a linear model, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24 (2007) 1426-1430.
[5] R.K.Parrish, S.J.Gedde, I.U.Scott, W.J.Feuer, J.C.Schiffman, C.M.Mangione, A.Montenegro-Piniella. Visual function and quality of life among patients with glaucoma, Arch. Oph-thalmol. 115 (1997) 1447-1455.
[6] P.A.Sample, C.F.Bosworth, R.N.Weinreb. The loss of visual function in glaucoma, Semin. Ophthalmol. 15 (2000) 182-193.
[7] R.L.Stamper. Psychophysical changes in glaucoma, Surv. Ophthalmol. 33 Suppl (1989) 309-318.
[8] P.V.Algvere, L.Berglin, P.Gouras, Y.Sheng. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization, Graefes Arch. Clin. Exp. Ophthalmol. 232 (1994) 707-716.
[9] M.I.Boone, G.G.Massry, R.A.Frankel, J.B.Holds, S.M.Chung. Visual outcome in bilateral nonarteritic anterior ischemic optic neuropathy, Ophthalmology 103 (1996) 1223-1228.
[10] S.J.Givre, D.C.Hood, M.Wall, R.H.Kardon. Comparison of threshold and multifocal-vep perimetry in recovering and recovered optic neuritis, Investigative Ophthalmology & Visual Science 41 (2000) S625.
[11] D.R.Johns, K.H.Smith, N.R.Miller, M.E.Sulewski, W.B.Bias. Identical-Twins Who Are Discordant for Leber Hereditary Optic Neuropathy, Archives of Ophthalmology 111 (1993) 1491-1494.
[12] Y.Rotenstreich, G.A.Fishman, M.Lindeman, K.R.Alexander. The application of chromatic dark-adapted kinetic perimetry to retinal diseases, Ophthalmology 111 (2004) 1222-1227.
[13] H.Terasaki, Y.Miyake, R.Nomura, M.Horiguchi, S.Suzuki, M.Kondo. Blue-on-yellow perimetry in the complete type of congenital stationary night blindness, Invest Ophthalmol. Vis. Sci. 40 (1999) 2761-2764.
[14] J.C.Brown, J.A.Kylstra, M.L.Mah. Entoptic perimetry screening for central diabetic scotomas and macular edema, Ophthalmology 107 (2000) 755-759.
[15] M.Mavrikakis, S.Papazoglou, P.P.Sfikakis, G.Vaiopoulos, K.Rougas. Retinal toxicity in long term hydroxychloroquine treatment, Ann. Rheum. Dis. 55 (1996) 187-189.
[16] S.A.Mazzuca, R.Yung, K.D.Brandt, R.D.Yee, B.P.Katz. Current practices for monitoring ocular toxicity related to hydroxychloroquine (Plaquenil) therapy, J. Rheumatol. 21 (1994) 59-63.
[17] M.R.Razeghinejad, F.Torkaman, H.Amini. Blue-yellow perimetry can be an early detector of hydroxychloroquine and chloroquine retinopathy, Med. Hypotheses 65 (2005) 629-630.
[18] J.McDonagh, L.J.Stephen, F.M.Dolan, S.Parks, G.N.Dutton, K.Kelly, D.Keating, G.J.Sills, M.J.Brodie. Peripheral retinal dysfunction in patients taking vigabatrin, Neurology 61 (2003) 1690-1694.
[19] A.Eisner, D.F.Austin, J.R.Samples. Short wavelength auto-mated perimetry and tamoxifen use, Br. J. Ophthalmol. 88 (2004) 125-130.
[20] M.T.Barboni, M.F.da Costa, A.L.Moura, C.Feitosa-Santana, M.Gualtieri, M.Lago, M.A.Medrado-Faria, L.C.Silveira, D.F.Ventura. Visual field losses in workers exposed to mer-cury vapor, Environ. Res. 107 (2008) 124-131.
[21] B.Bengtsson, J.Olsson, A.Heijl, H.Rootzen. A new genera-tion of algorithms for computerized threshold perimetry, SITA, Acta Ophthalmol. Scand. 75 (1997) 368-375.
[22] B.Bengtsson, A.Heijl, J.Olsson. Evaluation of a new thre-shold visual field strategy, SITA, in normal subjects. Swedish Interactive Thresholding Algorithm, Acta Ophthalmol. Scand. 76 (1998) 165-169.
[23] W.J.Dixon, F.J.Massey. Introduction to Statistical Analysis, McGraw-Hill, New York, N.Y., 1969.
[24] L.F.Jindra. Theoretical methods in the assessment of vision and automated perimetry, Ophthalmic Surgery Lasers & Imaging 37 (2006) 516-523.
[25] L.C.Norden. Reliability in perimetry, J. Am. Optom. Assoc. 60 (1989) 880-890.
[26] G.H.Thomson. A new point of view in the interpretation of threshold measurements in psychophysics, Psychological Review 27 (1920) 300-307.
[27] S.S.Stevens. Problems and methods of psychophysics, Psy-chol. Bull. 55 (1958) 177-196.
[28] J.A.Swets. Detection Theory and Psychophysics - A Review, Psychometrika 26 (1961) 49-63.
[29] P.Bovet. Method of Absolute Judgement in Psychophysics, Bulletin de Psychologie 22 (1969) 631-639.
[30] F.W.Fitzke. Clinical psychophysics, Eye 2 Suppl (1988) S233-S241.
[31] D.J.Risovic, K.R.Misailovic, J.M.Eric-Marinkovic, N.G.Kosanovic-Jakovic, S.M.Milenkovic, L.Z.Petrovic. Re-fractive errors and binocular dysfunctions in a population of university students, Eur. J. Ophthalmol. 18 (2008) 1-6.
[32] R.B.Schimiti, R.R.Avelino, N.Kara-Jose, V.P.Costa. Full-threshold versus Swedish Interactive Threshold Algo-rithm (SITA) in normal individuals undergoing automated perimetry for the first time, Ophthalmology 109 (2002) 2084-2092.
[33] R.S.Anderson. The psychophysics of glaucoma: improving the structure/function relationship, Prog. Retin. Eye Res. 25 (2006) 79-97.
[34] E.A.Ansari, J.E.Morgan, R.J.Snowden. Glaucoma: squaring the psychophysics and neurobiology, Br. J. Ophthalmol. 86 (2002) 823-826.
[35] S.Kogure, T.Chiba, S.Saito, H.Iijima, S.Tsukahara. Predicting glaucomatous sensitivity loss using perimetric color sa-turation test, Jpn. J. Ophthalmol. 47 (2003) 537-542.
[36] P.Pearson, W.H.Swanson, R.L.Fellman. Chromatic and ach-romatic defects in patients with progressing glaucoma, Vision Res. 41 (2001) 1215-1227.
[37] B.Bengtsson, K.J.Hellgren, E.Agardh. Test-retest variability for standard automated perimetry and short-wavelength au-tomated perimetry in diabetic patients, Acta Ophthalmol. 86 (2008) 170-176.
[38] G.H.Bresnick, V.Smith, J.Pokorny. Visual function abnor-malities in macular heterotopia caused by proliferative diabetic retinopathy, Am. J. Ophthalmol. 92 (1981) 85-102.
[39] F.Mori, S.Ishiko, N.Kitaya, T.Hikichi, E.Sato, A.Takamiya, A.Yoshida. Use of scanning laser ophthalmoscope micrope-rimetry in clinically significant macular edema in type 2 di-abetes mellitus, Jpn. J. Ophthalmol. 46 (2002) 650-655.
[40] R.Nomura, H.Terasaki, H.Hirose, Y.Miyake. Blue-on-yellow perimetry to evaluate S cone sensitivity in diabetics, Oph-thalmic Res. 32 (2000) 69-72.
[41] M.Okuyama, S.Okisaka. Automatic static threshold perimetry is useful for estimating the effects of laser photocoagulation on diabetic maculopathy, Ophthalmic Res. 30 (1998) 207-215.
[42] N.Accornero, S.Rinalduzzi, M.Capozza, E.Millefiorini, G.C.Filligoi, L.Capitanio. Computerized color perimetry in multiple sclerosis, Mult. Scler. 4 (1998) 79-84.
[43] H.Cheng, M.Laron, J.S.Schiffman, R.A.Tang, L.J.Frishman. The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis, Invest Ophthalmol. Vis. Sci. 48 (2007) 5798-5805.
[44] T.Vidovic, B.Cerovski, D.H.Vidovic, J.Cerovski, K.Novak-Laus. Inapparent visual field defects in multiple sclerosis patients, Coll. Antropol. 29 Suppl 1 (2005) 67-73.
[45] J.Lebel, D.Mergler, M.Lucotte, M.Amorim, J.Dolbec, D.Miranda, G.Arantes, I.Rheault, P.Pichet. Evidence of early nervous system dysfunction in Amazonian populations exposed to low-levels of methylmercury, Neurotoxicology 17 (1996) 157-167.
[46] M.Easterbrook. Detection and prevention of maculopathy associated with antimalarial agents, Int. Ophthalmol. Clin. 39 (1999) 49-57.
[47] W.M.Hart, Jr., R.M.Burde, G.P.Johnston, R.C.Drews. Static perimetry in chloroquine retinopathy. Perifoveal patterns of visual field depression, Arch. Ophthalmol. 102 (1984) 377-380.
[48] R.K.Maturi, M.Z.Yu, R.G.Weleber. Multifocal electroreti-nographic evaluation of long-term hydroxychloroquine users, Archives of Ophthalmology 122 (2004) 973-981.
[49] S.A.Mazzuca, R.Yung, K.D.Brandt, R.D.Yee, B.P.Katz. Common Practices for Monitoring Ocular Toxicity Related to Hydroxychloroquine (Plaquenil) Therapy, Journal of Rheumatology 21 (1994) 59-63.
[50] I.G.Rennie. Clinically important ocular reactions to systemic drug therapy, Drug Saf 9 (1993) 196-211.
[51] J.L.Anctil, D.R.Anderson. Early foveal involvement and generalized depression of the visual field in glaucoma, Arch. Ophthalmol. 102 (1984) 363-370.
[52] N.J.Newman, V.Biousse, S.A.Newman, M.T.Bhatti, S.R.Hamilton, B.K.Farris, R.L.Lesser, R.E.Turbin. Progres-sion of visual field defects in leber hereditary optic neuro-pathy: experience of the LHON treatment trial, Am. J. Oph-thalmol. 141 (2006) 1061-1067.
[53] J.Felius, W.H.Swanson. Effects of cone adaptation on variability in S-cone increment thresholds, Invest Ophthalmol. Vis. Sci. 44 (2003) 4140-4146.
[54] A.Serra, I.Zucca, A.Tanda, V.Piras, M.Fossarello. Blue-yellow perimetry in patients with ocular hypertone, Acta Ophthalmol. Scand. Suppl (1998) 24-27.
[55] M.G.Uva, P.M.Di, A.Longo, K.Lauretta, M.Reibaldi, A.Reibaldi. Pattern ERG and RNFL thickness in hyperten-sive eyes with normal blue-yellow visual field, Graefes Arch. Clin. Exp. Ophthalmol. (2012).
[56] L.Racette, P.A.Sample. Short-wavelength automated peri-metry, Ophthalmol. Clin. North Am. 16 (2003) 227-vii.
[57] L.N.Thibos. Acuity perimetry and the sampling theory of visual resolution, Optometry and Vision Science 75 (1998) 399-406.
[58] I.Cacho, C.M.Dickinson, B.C.Reeves, R.A.Harper. Visual acuity and fixation characteristics in age-related macular degeneration, Optom. Vis. Sci. 84 (2007) 487-495.
[59] L.Vleugels, M.Charlier, A.van Nunen, C.Lafosse, R.Vogels, P.Ketelaer, E.Vandenbussche. Temporal resolution deficits in the visual fields of MS patients, Vision Research 39 (1999) 2429-2438.
Cite This Article
  • APA Style

    Andrea Pulchinelli, Marcelo Fernandes Costa. (2013). Aging Effects in Psychophysical Foveal Light Detection Thresholds. Psychology and Behavioral Sciences, 2(1), 14-19. https://doi.org/10.11648/j.pbs.20130201.13

    Copy | Download

    ACS Style

    Andrea Pulchinelli; Marcelo Fernandes Costa. Aging Effects in Psychophysical Foveal Light Detection Thresholds. Psychol. Behav. Sci. 2013, 2(1), 14-19. doi: 10.11648/j.pbs.20130201.13

    Copy | Download

    AMA Style

    Andrea Pulchinelli, Marcelo Fernandes Costa. Aging Effects in Psychophysical Foveal Light Detection Thresholds. Psychol Behav Sci. 2013;2(1):14-19. doi: 10.11648/j.pbs.20130201.13

    Copy | Download

  • @article{10.11648/j.pbs.20130201.13,
      author = {Andrea Pulchinelli and Marcelo Fernandes Costa},
      title = {Aging Effects in Psychophysical Foveal Light Detection Thresholds},
      journal = {Psychology and Behavioral Sciences},
      volume = {2},
      number = {1},
      pages = {14-19},
      doi = {10.11648/j.pbs.20130201.13},
      url = {https://doi.org/10.11648/j.pbs.20130201.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pbs.20130201.13},
      abstract = {Foveal light detection sensitivity was evaluated in 348 volunteers covering a large age range using an automated perimetry performed in the Humphrey Field Analyzer II. Foveal sensitivity was measured using the Humphrey’s 4–2 bracketing strategy with a 30 dB initial stimulus intensity, at an inferior visual field location, a 0.431 (4mm2, viewed at 30 cm; Goldmann III) spot of white light is presented on a 10 cd/m2 white background. The sensitivity measurement was performed monocularly in both eyes randomly chosen. Our results showed a negative moderate correlation between age and the light sensitivity detection of OD (r= -0.5591; p< 0.001) and OS (r= -0.6021, p< 0.001). A moderate positive correlation was ob-tained between the light sensitivity of the two eyes (r= -0.5986; p< 0.001). We conclude reporting aging effect in the foveal sensitivity light detection suggesting functional decrease in perceptual function guide by developmental changes. Tolerance limits for normative purposes were measured.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Aging Effects in Psychophysical Foveal Light Detection Thresholds
    AU  - Andrea Pulchinelli
    AU  - Marcelo Fernandes Costa
    Y1  - 2013/02/20
    PY  - 2013
    N1  - https://doi.org/10.11648/j.pbs.20130201.13
    DO  - 10.11648/j.pbs.20130201.13
    T2  - Psychology and Behavioral Sciences
    JF  - Psychology and Behavioral Sciences
    JO  - Psychology and Behavioral Sciences
    SP  - 14
    EP  - 19
    PB  - Science Publishing Group
    SN  - 2328-7845
    UR  - https://doi.org/10.11648/j.pbs.20130201.13
    AB  - Foveal light detection sensitivity was evaluated in 348 volunteers covering a large age range using an automated perimetry performed in the Humphrey Field Analyzer II. Foveal sensitivity was measured using the Humphrey’s 4–2 bracketing strategy with a 30 dB initial stimulus intensity, at an inferior visual field location, a 0.431 (4mm2, viewed at 30 cm; Goldmann III) spot of white light is presented on a 10 cd/m2 white background. The sensitivity measurement was performed monocularly in both eyes randomly chosen. Our results showed a negative moderate correlation between age and the light sensitivity detection of OD (r= -0.5591; p< 0.001) and OS (r= -0.6021, p< 0.001). A moderate positive correlation was ob-tained between the light sensitivity of the two eyes (r= -0.5986; p< 0.001). We conclude reporting aging effect in the foveal sensitivity light detection suggesting functional decrease in perceptual function guide by developmental changes. Tolerance limits for normative purposes were measured.
    VL  - 2
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Orthoptics and Ocular Motility Section, Pacaembu Eye Clinic, S?o Paulo, SP, Brasil

  • Clinical Psychophysics and Electrophysiology of Vision, Dept. of Experimental Psychology, Psychology Institute, and Nucleus for Neuroscience and Behaviour, University of S?o Paulo, S?o Paulo, SP, Brasil

  • Sections