Edible insects are an important source of nutrients that can help to cover certain nutritional deficiencies. This is the case with Macrotermes subhyalinus, a species of termite widely consumed in Côte d'Ivoire. This study was carried out to assess the mineral content and their bioavailability in the different castes (winged, queen and soldier) of this species. For this, the levels of antinutritional factors, the levels of minerals and their bioavailability were determined. Magnesium and potassium contents vary respectively from 977.18 mg/100g DM to 1405.45 mg/100g DM and from 6658.20 mg/100g DM to 9879.38 mg/100g DM. The winged M. subhyalinus had the higher levels of copper (62 mg/100g DM) and manganese (2867 mg/100g DM). While the queen had the highest values for sodium (2158.9 mg/100g DM) and selenium (0.67 mg/100g DM). As for M. subhyalinus soldier, it was rich in calcium (3323.4 mg/100g DM), zinc (127 mg/100g DM), iron (2657 mg/100g DM) and molybdenum (0.48 mg/100g DM). Regarding the content of antinutritional factors, the highest values are observed with M. subhyalinus soldier in phytate (451.85±28.49 mg/100g DM) and in tannins (35.32±0.98 mg/100g DM). M. subhyalinus queen has the highest oxalate content (12.57±0.48 mg/100g DM). The calculated molar ratios vary from 0.02 to 0.9 with oxalate and from 0.09 to 35.57 with phytates. These insects could be recommended for children suffering from micronutrient deficiency malnutrition.
Published in | Journal of Food and Nutrition Sciences (Volume 10, Issue 1) |
DOI | 10.11648/j.jfns.20221001.11 |
Page(s) | 1-7 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Edible Insects, Macrotermes subhyalinus, Mineral Content, Bioavailability, Antinutritional Factors
[1] | Akindès, F., Sedia, G., Kouakou, G., Berchon, A. & Bricas N. (2016). Considérer autrement les mères pour mieux comprendre l'alimentation infantile. |
[2] | PNMN. (2016). Plan National Multisectoriel de Nutrition 2016 – 2020. République de Côte d’Ivoire. 37 pages. |
[3] | EDS-MICS. (2012). Cote d’Ivoire: Enquête démographique et de sante a indicateurs multiples. 591 p. |
[4] | INS. (2012). Enquête Démographique Et De Santé Et à Indicateurs Multiples De Côte d’Ivoire 2011-2012. Calverton, Maryland, USA: Institut National de la Statistique et ICF International. |
[5] | FAO. (2014). Insectes comestibles: Perspectives pour la sécurité alimentaire et l’alimentation animale. Etude FAO forêts n°171, 207p. |
[6] | Ehounou, G. P., Ouali-N'goran, S. W. & Niassy, S. (2018). Evaluation de l'entomophagie à Abidjan (Côte d’Ivoire, Afrique de l'Ouest). African Journal of Food Science. 12 (1), 6-14. |
[7] | Boko, A. C. E. & Angaman, D. M. (2021). Evaluation de l’entomophagie dans Quatre Grandes Villes de Côte d’Ivoire. European Scientific Journal, ESJ, 17 (37), 1. https://doi.org/10.19044/esj.2021.v17n37p119 |
[8] | Boko, A. C. E & Angaman, D. M. (2021). Nutritional Quality of Six African Edible Insects. International Journal of Food Science and Biotechnology. Vol. 6, No. 4, 2021, pp. 96-106. doi: 10.11648/j.ijfsb.20210604.12. |
[9] | Niaba, K. P. V., Gbogouri, G. A., BEUGRE, A. G., Ocho-Anin A. A. L. & GNAKRI. D. (2011). Potentialités nutritionnelles du reproducteur ailé du termite Macrotermes subhyalinus capturé à Abobodoume, Côte d’Ivoire. Journal of Applied Biosciences. 40, 2706-2714. |
[10] | Latta, M. & Eskin, M. (1980). A simple method for phytate determination. Journal of Agricultural and Food Chimistry, 28. 1313-1315pp. |
[11] | Day, R. A. & Underwood, A. L. (1986). Quantitative analysis. In: Prentice-Hall. 701 P. |
[12] | Polshettiwar, S. A., Ganjiwale, R. O., Wadher, S. J., & Yeole, P. G. (2007). Spectrophotometric estimation of total tannins in some ayurvedic eye drops. Indian Journal of Pharmaceutical Sciences, 69 (4), 574. |
[13] | Gibson, R. S., Bailey, K. B., Gibbs, M., and Ferguson, E. L. (2010). Phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food and Nutrition Bulletin 31, 134-146. |
[14] | Niaba, K. P. V. (2014). Potentialités alimentaires et nutritionnelles de Macrotermes subhyalinus ailé en côte d'ivoire THESE Pour l'obtention du grade de Docteur en Sciences et Technologie des Aliments de l'Université Nangui Abrogoua 149p. |
[15] | de l’Anses, A. (2021). Les références nutritionnelles en vitamines et minéraux. |
[16] | Badanaro, F., Houndji, B. V. S., Melila, M., Amevoin, K., & Amouzou, S. K. E. (2018). Potentiel nutritionnel de Macrotermes bellicosus (Smeathman, 1781)(isoptera: termitidae), une des especes d’insectes comestibles les plus commercialisees au Togo. Journal de la Recherche Scientifique de l’Université de Lomé, 20 (3), 41-50. |
[17] | Saulais, C. (2000). Calcium et magnésium dans l'organisme humain: trois sites d'action comparés; ostéogénèse, fonction rénale, influx nerveux (Doctoral dissertation, UHP-Université Henri Poincaré). |
[18] | Casciaro, M., Di Salvo, E., Pace, E., Ventura-Spagnolo, E., Navarra, M., & Gangemi, S. (2017). Chlorinative stress in age-related diseases: a literature review. Immunity & Ageing, 14 (1), 1-7. |
[19] | OMS, (1985). Besoin énergétique et besoin en protéines, Rapports d’une consultation conjointe d’expert Fao/OMS/ UNU, Série de rapports technique Genève (Suisse) 724. |
[20] | Roohani, N., Hurrell, R., Wegmueller, R., & Schulin, R. (2012). Zinc and phytic acid in major foods consumed by a rural and a suburban population in central Iran. Journal of Food Composition and Analysis, 28 (1), 8-15. |
[21] | Yao, N. B., Kpata-Konan, N. E., Guetandé, K. L. & Tano, K. (2020 Caractérisation De Quelques Légumes-Feuilles Les Plus Consommés Dans La Ville De Daloa (Centre-Ouest, Côte d’Ivoire). European Scientific Journal, ESJ, 16 (36), 1. https://doi.org/10.19044/esj.2020.v16n36p257 |
[22] | Gemede, H. F., Haki, G. D., Beyene, F., Woldegiorgis, A. Z. & Rakshit, S. K. (2016). Proximate, mineral, and antinutrient compositions of indigenous Okra (Abelmoschus esculentus) pod accessions: implications for mineral bioavailability. Food Science & Nutrition 4, 223–233. |
[23] | Lestienne, I. (2004). Contribution à l’étude de la biodisponibilité du fer et du zinc dans le grain de mil et conditions d’amélioration dans les aliments de complément. Université Montpellier II. |
[24] | Al-Hasan, S. M., Hassan, M., Saha, S., Islam, M., Billah, M. & Islam, S. (2016). Dietary phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women in rural Bangladesh: a cross-sectional study. BMC Nutrition 24. |
[25] | Petroski, W., & Minich, D. M. (2020). Is There Such a Thing as “Anti-Nutrients”? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients, 12 (10), 2929. |
[26] | Nadal, A., Alonso-Magdalena, P., Soriano, S., Quesada, I., & Ropero, A. B. (2009). The pancreatic β-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Molecular and cellular endocrinology, 304 (1-2), 63-68. |
[27] | Özcan, M. A. (2014). New Alternative Protein Sources Used in Poultry Nutrition. Turkish Journal of Agriculture-Food Science and Technology, 2 (2), 66-70. |
[28] | Bruneton, J. "Pharmacognosie-Phytochimie, plantes médicinales, 4e éd., revue et augmentée, Paris, Technologie & Document. Éditions médicales internationales." (2009): 7430-1188. |
[29] | Sérémé, A., Millogo-Rasolodimby, J., Guinko, S., & Nacro, M. (2008). Concentration en tanins des organes de plantes tannifères du Burkina Faso. Journal de la Société ouest-africaine de chimie, 25 (1), 55-61. |
APA Style
Angaman Djédoux Maxime, Boko Adjoua Christiane Eunice, Kambou Sansan. (2022). Evaluation of the Mineral Content and Their Bioavailability in Macrotermes subhyalinus (Winged, Queen and Soldier). Journal of Food and Nutrition Sciences, 10(1), 1-7. https://doi.org/10.11648/j.jfns.20221001.11
ACS Style
Angaman Djédoux Maxime; Boko Adjoua Christiane Eunice; Kambou Sansan. Evaluation of the Mineral Content and Their Bioavailability in Macrotermes subhyalinus (Winged, Queen and Soldier). J. Food Nutr. Sci. 2022, 10(1), 1-7. doi: 10.11648/j.jfns.20221001.11
AMA Style
Angaman Djédoux Maxime, Boko Adjoua Christiane Eunice, Kambou Sansan. Evaluation of the Mineral Content and Their Bioavailability in Macrotermes subhyalinus (Winged, Queen and Soldier). J Food Nutr Sci. 2022;10(1):1-7. doi: 10.11648/j.jfns.20221001.11
@article{10.11648/j.jfns.20221001.11, author = {Angaman Djédoux Maxime and Boko Adjoua Christiane Eunice and Kambou Sansan}, title = {Evaluation of the Mineral Content and Their Bioavailability in Macrotermes subhyalinus (Winged, Queen and Soldier)}, journal = {Journal of Food and Nutrition Sciences}, volume = {10}, number = {1}, pages = {1-7}, doi = {10.11648/j.jfns.20221001.11}, url = {https://doi.org/10.11648/j.jfns.20221001.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jfns.20221001.11}, abstract = {Edible insects are an important source of nutrients that can help to cover certain nutritional deficiencies. This is the case with Macrotermes subhyalinus, a species of termite widely consumed in Côte d'Ivoire. This study was carried out to assess the mineral content and their bioavailability in the different castes (winged, queen and soldier) of this species. For this, the levels of antinutritional factors, the levels of minerals and their bioavailability were determined. Magnesium and potassium contents vary respectively from 977.18 mg/100g DM to 1405.45 mg/100g DM and from 6658.20 mg/100g DM to 9879.38 mg/100g DM. The winged M. subhyalinus had the higher levels of copper (62 mg/100g DM) and manganese (2867 mg/100g DM). While the queen had the highest values for sodium (2158.9 mg/100g DM) and selenium (0.67 mg/100g DM). As for M. subhyalinus soldier, it was rich in calcium (3323.4 mg/100g DM), zinc (127 mg/100g DM), iron (2657 mg/100g DM) and molybdenum (0.48 mg/100g DM). Regarding the content of antinutritional factors, the highest values are observed with M. subhyalinus soldier in phytate (451.85±28.49 mg/100g DM) and in tannins (35.32±0.98 mg/100g DM). M. subhyalinus queen has the highest oxalate content (12.57±0.48 mg/100g DM). The calculated molar ratios vary from 0.02 to 0.9 with oxalate and from 0.09 to 35.57 with phytates. These insects could be recommended for children suffering from micronutrient deficiency malnutrition.}, year = {2022} }
TY - JOUR T1 - Evaluation of the Mineral Content and Their Bioavailability in Macrotermes subhyalinus (Winged, Queen and Soldier) AU - Angaman Djédoux Maxime AU - Boko Adjoua Christiane Eunice AU - Kambou Sansan Y1 - 2022/01/08 PY - 2022 N1 - https://doi.org/10.11648/j.jfns.20221001.11 DO - 10.11648/j.jfns.20221001.11 T2 - Journal of Food and Nutrition Sciences JF - Journal of Food and Nutrition Sciences JO - Journal of Food and Nutrition Sciences SP - 1 EP - 7 PB - Science Publishing Group SN - 2330-7293 UR - https://doi.org/10.11648/j.jfns.20221001.11 AB - Edible insects are an important source of nutrients that can help to cover certain nutritional deficiencies. This is the case with Macrotermes subhyalinus, a species of termite widely consumed in Côte d'Ivoire. This study was carried out to assess the mineral content and their bioavailability in the different castes (winged, queen and soldier) of this species. For this, the levels of antinutritional factors, the levels of minerals and their bioavailability were determined. Magnesium and potassium contents vary respectively from 977.18 mg/100g DM to 1405.45 mg/100g DM and from 6658.20 mg/100g DM to 9879.38 mg/100g DM. The winged M. subhyalinus had the higher levels of copper (62 mg/100g DM) and manganese (2867 mg/100g DM). While the queen had the highest values for sodium (2158.9 mg/100g DM) and selenium (0.67 mg/100g DM). As for M. subhyalinus soldier, it was rich in calcium (3323.4 mg/100g DM), zinc (127 mg/100g DM), iron (2657 mg/100g DM) and molybdenum (0.48 mg/100g DM). Regarding the content of antinutritional factors, the highest values are observed with M. subhyalinus soldier in phytate (451.85±28.49 mg/100g DM) and in tannins (35.32±0.98 mg/100g DM). M. subhyalinus queen has the highest oxalate content (12.57±0.48 mg/100g DM). The calculated molar ratios vary from 0.02 to 0.9 with oxalate and from 0.09 to 35.57 with phytates. These insects could be recommended for children suffering from micronutrient deficiency malnutrition. VL - 10 IS - 1 ER -