| Peer-Reviewed

Tempering Process Optimization in Sae 9254 Wires Through Generalized Reduced Gradient, Genetic Algorithms and Simulated Annealing

Received: 15 January 2016     Accepted: 3 February 2016     Published: 23 February 2016
Views:       Downloads:
Abstract

The purpose of this work was the creation of a statistical modeling able to replace the process used to setup of the ovens of the quench hardening and tempering that is traditionally accomplished through adjustments made based on the results of mechanical properties as tested in laboratory and required in customer specifications. We sought to understand the influence of the input variables (factors) on the mechanical properties tensile strength and hardness, in SAE 9254 draw steel wires, with diameters 2.00 mm and 6.50 mm, used in the manufacture of valve springs and clutch for automobile tracking. Were investigated the input variables of the process speed and tempering temperature. Design of Experiments with block Analysis, Quadratic Multiple Regression, Analysis of Variance (ANOVA) and Response Surface Methodology (RSM). For the optimization of statistical models were used the Generalized Reduced Gradient methods (GRG), Genetic Algorithm (AG) and the Meta-heuristics Simulated Annealing (SA). The results revealed that all variables considered have significant influence and models obtained were validated using appropriate statistical methods. This new modeling and its optimization, if properly implemented and enforced, could lead scientific advances which would provide the automation of this process, and consequently cause great impact on increasing productivity and product quality.

Published in American Journal of Theoretical and Applied Statistics (Volume 5, Issue 1)
DOI 10.11648/j.ajtas.20160501.15
Page(s) 27-38
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Heat Treatment, Generalized Reduced Gradient, Design of Experiments, Response Surface Method, Genetic Algorithms, Meta-Heuristic

References
[1] BARROS, A. D.; MOCELLIN, J. V. Análise da flutuação do gargalo em flow shop permutacional com tempos de setup assimétricos e dependentes da seqüência. Gestão & Produção, São Paulo, v.11, n. 1, p. 101-108, Jan 2004.
[2] BLONDEAU R., MAYNIER, P. H.; DOLLET J., VIEILLARD, B. Mathematical model for the calculation of mechanical properties of low-alloy steel metallurgical products: a few examples of its applications. Bratec, Wisconsin, v. 48, n. 1, p. 3244–3246, oct 2000.
[3] CALLISTER JR., W. D.; RETHWISCH, D. G. Ciência e engenharia de materiais: Uma introdução. 8. ed. New York: LTC, 2012. 724 p.
[4] CAMARÃO, A. F. Um modelo para previsão de tensões residuais em cilindros de aço temperados por indução. 1998. 107 f. Thesis (doctorate in metallurgical engineering)- Escola de Engenharia de São Paulo, São Paulo, 1998.
[5] CHIAVERINI, V. Aços e Ferros Fundidos. 7. ed. São Paulo: Associação Brasileira de Metalurgia e Materiais, 2012. 600 p.
[6] CORREIA, E. A. S.; CARDOZA, J. A. S. Planejamento de experimentos no processo produtivo utilizando o método Taguchi. Gestão da Produção Operações e Sistemas, Bauru, v.6, n. 1, p. 55–66, jan 2011.
[7] GROSSELLE, F.; TIMELLI, G.; BONOLLO, F. Doe applied to microstructural and mechanical properties of Al–Si–Cu–Mg. Journal Materials Science and Engineering, Sydney, v. 527, n. 1, p. 3536–3545, oct 2010.
[8] GUNASEGARAM, D. R.; FARNSWORTH, D. J.; NGUYENA, T. T. Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments. Journal of Materials Processing Technology, Sydney, v. 209, n. 1, p. 1209–1219, oct 2009.
[9] HODGSON, P. D.; GIBBS, R. K. A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels”. ISIJ International, Tokio, v. 32, n. 10, p. 32–50, jan 1992.
[10] HOLLAND, J. H. Adaptation in natural and artificial systems. 1. ed. Cambridge: MIT press, 1975. 500 p.
[11] JUNIOR, H. A. O. Projeto de filtros digitais e separação de fontes usando fuzzy adaptive simulated annealing. 2008. 140 f. Tese (Doutorado em Engenharia)- Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2008.
[12] NETO, B. B.; SCARMINIO, I. S.; BRUNS, R. E. Como fazer experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria. 3. ed. Campinas: Unicamp, 2007. 480 p.
[13] PAULA, R. F. V. Fadiga de molas helicoidais de suspensão de automóveis. 2013. 145 f. Dissertação (Mestrado em Engenharia Mecânica)- Universidade Estadual Paulista, Guaratinguetá, 2013.
[14] RIBEIRO, L. P. P. G. Caracterização das Propriedades Mecânicas do Aço SAE 4140 após Diferentes Tratamentos de Têmpera e Revenido, 2006. 100 f. Dissertation (master's degree in metallurgical engineering)- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2006.
[15] ROSA, J. L.; ROBIN, A.; SILVA, M. B.; BALDAN, C. A.; PERES, M. P. Electrodeposition of copper on titanium wires: Taguchi experimental design approach. Journal of Materials Processing Technology, Sydney, v. 209, n. 1, p. 1181–1188, jan 2009.
[16] SACOMAN M. A. R.; Otimização de projetos utilizando GRG, Solver e Excel. In: CONGRESSO BRASILEIRO DE EDUCAÇÃO E ENGENHARIA, 1., 2012, Belém- Brasil, 2012. Impres. 1-12 p.
[17] SILVA, K. G. Uso de simulated annealing e algoritmo genético no problema da reconfiguração de uma rede de distribuição de energia elétrica. 2013. 140 f. Dissertação (Mestrado em Engenharia)- Universidade Federal do Rio Grande do Norte, Natal, 2013.
[18] YAMADA, Y. Material for springs. Japan Society of spring Engineers, Tokio, v. 1, n. 1, p. 377-384, dec 2007.
[19] YAMAMOTO, L. Uso de simulated annealing e algoritmo genético no problema da reconfiguração de uma rede de distribuição de energia elétrica. 2004. 100 f. Dissertação (Mestrado em Engenharia)-Universidade Federal do Paraná, Curitiba, 2004.
[20] ZINI, E. O. C. Algoritmo Genético especializado na resolução de problemas com variáveis contínuas e altamente restritos. 2009. 100 f. Dissertação (Mestrado em Engenharia Elétrica)- Universidade Estadual Paulista, 2009.
Cite This Article
  • APA Style

    Cristie Diego Pimenta, Messias Borges Silva, Rosinei Batista Ribeiro, Rose Lima de Morais Campos, Walfredo Ribeiro de Campos Junior, et al. (2016). Tempering Process Optimization in Sae 9254 Wires Through Generalized Reduced Gradient, Genetic Algorithms and Simulated Annealing. American Journal of Theoretical and Applied Statistics, 5(1), 27-38. https://doi.org/10.11648/j.ajtas.20160501.15

    Copy | Download

    ACS Style

    Cristie Diego Pimenta; Messias Borges Silva; Rosinei Batista Ribeiro; Rose Lima de Morais Campos; Walfredo Ribeiro de Campos Junior, et al. Tempering Process Optimization in Sae 9254 Wires Through Generalized Reduced Gradient, Genetic Algorithms and Simulated Annealing. Am. J. Theor. Appl. Stat. 2016, 5(1), 27-38. doi: 10.11648/j.ajtas.20160501.15

    Copy | Download

    AMA Style

    Cristie Diego Pimenta, Messias Borges Silva, Rosinei Batista Ribeiro, Rose Lima de Morais Campos, Walfredo Ribeiro de Campos Junior, et al. Tempering Process Optimization in Sae 9254 Wires Through Generalized Reduced Gradient, Genetic Algorithms and Simulated Annealing. Am J Theor Appl Stat. 2016;5(1):27-38. doi: 10.11648/j.ajtas.20160501.15

    Copy | Download

  • @article{10.11648/j.ajtas.20160501.15,
      author = {Cristie Diego Pimenta and Messias Borges Silva and Rosinei Batista Ribeiro and Rose Lima de Morais Campos and Walfredo Ribeiro de Campos Junior and Jorge Luiz Rosa},
      title = {Tempering Process Optimization in Sae 9254 Wires Through Generalized Reduced Gradient, Genetic Algorithms and Simulated Annealing},
      journal = {American Journal of Theoretical and Applied Statistics},
      volume = {5},
      number = {1},
      pages = {27-38},
      doi = {10.11648/j.ajtas.20160501.15},
      url = {https://doi.org/10.11648/j.ajtas.20160501.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajtas.20160501.15},
      abstract = {The purpose of this work was the creation of a statistical modeling able to replace the process used to setup of the ovens of the quench hardening and tempering that is traditionally accomplished through adjustments made based on the results of mechanical properties as tested in laboratory and required in customer specifications. We sought to understand the influence of the input variables (factors) on the mechanical properties tensile strength and hardness, in SAE 9254 draw steel wires, with diameters 2.00 mm and 6.50 mm, used in the manufacture of valve springs and clutch for automobile tracking. Were investigated the input variables of the process speed and tempering temperature. Design of Experiments with block Analysis, Quadratic Multiple Regression, Analysis of Variance (ANOVA) and Response Surface Methodology (RSM). For the optimization of statistical models were used the Generalized Reduced Gradient methods (GRG), Genetic Algorithm (AG) and the Meta-heuristics Simulated Annealing (SA). The results revealed that all variables considered have significant influence and models obtained were validated using appropriate statistical methods. This new modeling and its optimization, if properly implemented and enforced, could lead scientific advances which would provide the automation of this process, and consequently cause great impact on increasing productivity and product quality.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Tempering Process Optimization in Sae 9254 Wires Through Generalized Reduced Gradient, Genetic Algorithms and Simulated Annealing
    AU  - Cristie Diego Pimenta
    AU  - Messias Borges Silva
    AU  - Rosinei Batista Ribeiro
    AU  - Rose Lima de Morais Campos
    AU  - Walfredo Ribeiro de Campos Junior
    AU  - Jorge Luiz Rosa
    Y1  - 2016/02/23
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajtas.20160501.15
    DO  - 10.11648/j.ajtas.20160501.15
    T2  - American Journal of Theoretical and Applied Statistics
    JF  - American Journal of Theoretical and Applied Statistics
    JO  - American Journal of Theoretical and Applied Statistics
    SP  - 27
    EP  - 38
    PB  - Science Publishing Group
    SN  - 2326-9006
    UR  - https://doi.org/10.11648/j.ajtas.20160501.15
    AB  - The purpose of this work was the creation of a statistical modeling able to replace the process used to setup of the ovens of the quench hardening and tempering that is traditionally accomplished through adjustments made based on the results of mechanical properties as tested in laboratory and required in customer specifications. We sought to understand the influence of the input variables (factors) on the mechanical properties tensile strength and hardness, in SAE 9254 draw steel wires, with diameters 2.00 mm and 6.50 mm, used in the manufacture of valve springs and clutch for automobile tracking. Were investigated the input variables of the process speed and tempering temperature. Design of Experiments with block Analysis, Quadratic Multiple Regression, Analysis of Variance (ANOVA) and Response Surface Methodology (RSM). For the optimization of statistical models were used the Generalized Reduced Gradient methods (GRG), Genetic Algorithm (AG) and the Meta-heuristics Simulated Annealing (SA). The results revealed that all variables considered have significant influence and models obtained were validated using appropriate statistical methods. This new modeling and its optimization, if properly implemented and enforced, could lead scientific advances which would provide the automation of this process, and consequently cause great impact on increasing productivity and product quality.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Production, University of Guaratinguetá (Feg-Unesp), S?o Paulo, Brazil

  • Department of Production, University of Guaratinguetá (Feg-Unesp), S?o Paulo, Brazil

  • Department of Production, University of Guaratinguetá (Feg-Unesp), S?o Paulo, Brazil

  • Department of Production, University of Guaratinguetá (Feg-Unesp), S?o Paulo, Brazil

  • Department of Marketing, College ESPM, S?o Paulo, Brazil

  • Department of Production, University of Guaratinguetá (Feg-Unesp), S?o Paulo, Brazil

  • Sections