New catalytic systems for polyhalogenmethanes addition to olefins were obtained by immobilization of complexes of Cu, Co, Mn, V (in the vanadyl form) and Fe with bifunctional ligands of aminoalcohols (monoethanolamine), substituted aminoalcohols (N, N-diethylaminoethanol), hydroxyaminoacids (serine, hydroxyproline) on the oxide supports. For Cu, Co, Mn, V the extrem dependence of the catalyst activity on the surface concentration of metal was observed. For iron containing systems the mechanism of the process depends on the concentration of metal — at low concentration (<0.4 wt. %) amine complex are active sites, at high concentration (>1.3 wt. %) — Lewis acid centres. By means of ESR the structure of active sites of the anchored complexes at different metal concentration was stated on the example of copper containing systems. Complexes isolated on the surface of mineral support at the expanse of strong covalent bonding of one of the lignd groups with surface hydroxyls were the most active. Such a structure provides the formation of the surface complexes of divalent copper with four nitrogen atoms in the coordination sphere.
Published in | American Journal of Physical Chemistry (Volume 2, Issue 2) |
DOI | 10.11648/j.ajpc.20130202.11 |
Page(s) | 24-32 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Transition Metal Complexes, Addition, Carbon Tetrachloride, Surface, Immobilization
[1] | M.S. Kharash, E.V. Jensen, W.H. Urry (1947) J. of Am. Chem. Soc., 69: 1100 |
[2] | Mayo F.R. (1948) J. Am. Chem. Soc., 70: 3689 |
[3] | Freidlina R.Kh., Chukovskaya E.C. (1974) Synthesis, 10: 447 |
[4] | Assher M., Vofsi D. (1963) J. Chem. Soc., 1887 |
[5] | T.Sasaki, M.Tada, C.Zhong (2008) J. Mol. Cat. A, 279: 200-209 |
[6] | Yohey Oe, Yasuhiro Uozumi (2008) Adv. Synth. Catal. 350: 1771-1775 |
[7] | J.M.Munoz-Molina, W.M.C. Sameera, E.Alvarez (2011) Inorg.Chem. 50: 2458-2467 |
[8] | L.G. Hun, L. Nondek (1987) Coll. Czech. Chem. Commun., 52: 1758 |
[9] | R. Davis, N.M.S. Khazal, T.E. Bitterwolf (1990) J. of Organomet. Chem., 397: 51 |
[10] | W.J. Bland, R. Davis, J.L.A. Durrant (1985) J. of Organomet. Chem., 280: 397 |
[11] | R.A.Gossage, L.A.Van de Kuil, G.Koten (1998) Acc.Chem.Res. 31: 423-431. |
[12] | L. Forti, F.Ghelfi, U.M.Pagnoni(1997) Tetrahedron. 53: 4419-4426 |
[13] | H. Uegaki, Y. Kotani, M. Kamigaito, M. Sawamoto (1997) Macromol., 30: 2249 |
[14] | C. Granel, Ph. Dubois, R. Jérôme, Ph. Theyssié (1996) Macromol., 29: 8576. |
[15] | J.S. Wang, K. Matyjaszewski (1995) J. of Amer. Chem. Soc., 117: 5614 |
[16] | M. Bialek, H. Cramail, A. Deffieux, S.M. Guilaume (2005) Europ. Polym. J., 41: 2678 |
[17] | T.Pintauer (2010) Eur. J. Inorg. Chem. 2449–2460. |
[18] | T.Sasaki, C.Zhong, M.Tada, Y.Iwasawa (2005) Chem. Comm.:2506 |
[19] | Berendsen G.E., Pikaart K.A., de Galan L. (1980) J. Liq. Chromatogr., 1437-1442 |
[20] | V.V.Smirnov , I.G.Tarkhanova, A.I.Kokorin, V.I.Pergushov, D.S.Tsvetkov (2005) Kinetics and Catalysis. 46: 65-71. |
[21] | V.V.Smirnov , I.G.Tarkhanova, A.I.Kokorin, M.G,Gantman, D.S.Tsvetkov (2005) Kinetics and Catalysis, 46: 72-76. |
[22] | V.V.Smirnov , I.G.Tarkhanova, A.I.Kokorin, D.S.Tsvetkov. (2005) Kinetics and Catalysis. 46: 861-866 |
[23] | V.V.Smirnov , I.G.Tarkhanova, D.S.Tsvetkov (2007) Kinetics and Catalysis. 48: 271-275. |
[24] | J.A.Bertrand, E.Fujita, D.G.VanDerveer (1980) Inorg. Chem., 19: 2022-2028 |
[25] | J.Jezierska, T.Gowiak, A.Ozarowski, Y.Y.Yablokov. (1998) Inorg.Chim.Acta. 275-276: 28-36. |
[26] | Y.Nishida, S.Kida (1976) J. Inorg. Nucl. Chem., 38: 451-457 |
[27] | J.E. Wertz, J.R. Bolton (1972) Electron Spin Resonance. Elementary theory and practical applications. McGraw Hill Book, Company, N.-Y. |
[28] | Goodman B. A., Raynor J. B. (1970) Adv. Inorg. Chem. Radiochem., 13: 135-162. |
[29] | Yu. N. Molin, K. M. Salikhov, K. I. Zamaraev, (1980) Spin Exchange. Springer-Verlag, Berlin |
[30] | N.M.Kabanov, A.I.Kokorin, V.B.Rogacheva and A.B.Zezin (1979) Polymer Sci. USSR, 21: 230-240 |
[31] | L.S. Molochnikov, B.K Radionov (1995) Russ. J. Phys. Chem., 69: 836. |
[32] | Goldanskii V.I., Herber R.H. (1968) Chemical application of Mossbauer spectroscopy. Academic Press. N.-Y – London. |
[33] | I.S.Akhrem, A.V.Orlinkov, М.Vol'pin.(1993) J. Chem. Soc., Chem. Commun.:671-672. |
APA Style
I. G. Tarkhanova, A. I. Kokorin, M. G. Gantman, V. M. Zelikman, D. S. Tsvetkov. (2013). Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands. American Journal of Physical Chemistry, 2(2), 24-32. https://doi.org/10.11648/j.ajpc.20130202.11
ACS Style
I. G. Tarkhanova; A. I. Kokorin; M. G. Gantman; V. M. Zelikman; D. S. Tsvetkov. Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands. Am. J. Phys. Chem. 2013, 2(2), 24-32. doi: 10.11648/j.ajpc.20130202.11
AMA Style
I. G. Tarkhanova, A. I. Kokorin, M. G. Gantman, V. M. Zelikman, D. S. Tsvetkov. Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands. Am J Phys Chem. 2013;2(2):24-32. doi: 10.11648/j.ajpc.20130202.11
@article{10.11648/j.ajpc.20130202.11, author = {I. G. Tarkhanova and A. I. Kokorin and M. G. Gantman and V. M. Zelikman and D. S. Tsvetkov}, title = {Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands}, journal = {American Journal of Physical Chemistry}, volume = {2}, number = {2}, pages = {24-32}, doi = {10.11648/j.ajpc.20130202.11}, url = {https://doi.org/10.11648/j.ajpc.20130202.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20130202.11}, abstract = {New catalytic systems for polyhalogenmethanes addition to olefins were obtained by immobilization of complexes of Cu, Co, Mn, V (in the vanadyl form) and Fe with bifunctional ligands of aminoalcohols (monoethanolamine), substituted aminoalcohols (N, N-diethylaminoethanol), hydroxyaminoacids (serine, hydroxyproline) on the oxide supports. For Cu, Co, Mn, V the extrem dependence of the catalyst activity on the surface concentration of metal was observed. For iron containing systems the mechanism of the process depends on the concentration of metal — at low concentration (1.3 wt. %) — Lewis acid centres. By means of ESR the structure of active sites of the anchored complexes at different metal concentration was stated on the example of copper containing systems. Complexes isolated on the surface of mineral support at the expanse of strong covalent bonding of one of the lignd groups with surface hydroxyls were the most active. Such a structure provides the formation of the surface complexes of divalent copper with four nitrogen atoms in the coordination sphere.}, year = {2013} }
TY - JOUR T1 - Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands AU - I. G. Tarkhanova AU - A. I. Kokorin AU - M. G. Gantman AU - V. M. Zelikman AU - D. S. Tsvetkov Y1 - 2013/04/02 PY - 2013 N1 - https://doi.org/10.11648/j.ajpc.20130202.11 DO - 10.11648/j.ajpc.20130202.11 T2 - American Journal of Physical Chemistry JF - American Journal of Physical Chemistry JO - American Journal of Physical Chemistry SP - 24 EP - 32 PB - Science Publishing Group SN - 2327-2449 UR - https://doi.org/10.11648/j.ajpc.20130202.11 AB - New catalytic systems for polyhalogenmethanes addition to olefins were obtained by immobilization of complexes of Cu, Co, Mn, V (in the vanadyl form) and Fe with bifunctional ligands of aminoalcohols (monoethanolamine), substituted aminoalcohols (N, N-diethylaminoethanol), hydroxyaminoacids (serine, hydroxyproline) on the oxide supports. For Cu, Co, Mn, V the extrem dependence of the catalyst activity on the surface concentration of metal was observed. For iron containing systems the mechanism of the process depends on the concentration of metal — at low concentration (1.3 wt. %) — Lewis acid centres. By means of ESR the structure of active sites of the anchored complexes at different metal concentration was stated on the example of copper containing systems. Complexes isolated on the surface of mineral support at the expanse of strong covalent bonding of one of the lignd groups with surface hydroxyls were the most active. Such a structure provides the formation of the surface complexes of divalent copper with four nitrogen atoms in the coordination sphere. VL - 2 IS - 2 ER -