| Peer-Reviewed

Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands

Published: 2 April 2013
Views:       Downloads:
Abstract

New catalytic systems for polyhalogenmethanes addition to olefins were obtained by immobilization of complexes of Cu, Co, Mn, V (in the vanadyl form) and Fe with bifunctional ligands of aminoalcohols (monoethanolamine), substituted aminoalcohols (N, N-diethylaminoethanol), hydroxyaminoacids (serine, hydroxyproline) on the oxide supports. For Cu, Co, Mn, V the extrem dependence of the catalyst activity on the surface concentration of metal was observed. For iron containing systems the mechanism of the process depends on the concentration of metal — at low concentration (<0.4 wt. %) amine complex are active sites, at high concentration (>1.3 wt. %) — Lewis acid centres. By means of ESR the structure of active sites of the anchored complexes at different metal concentration was stated on the example of copper containing systems. Complexes isolated on the surface of mineral support at the expanse of strong covalent bonding of one of the lignd groups with surface hydroxyls were the most active. Such a structure provides the formation of the surface complexes of divalent copper with four nitrogen atoms in the coordination sphere.

Published in American Journal of Physical Chemistry (Volume 2, Issue 2)
DOI 10.11648/j.ajpc.20130202.11
Page(s) 24-32
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2013. Published by Science Publishing Group

Keywords

Transition Metal Complexes, Addition, Carbon Tetrachloride, Surface, Immobilization

References
[1] M.S. Kharash, E.V. Jensen, W.H. Urry (1947) J. of Am. Chem. Soc., 69: 1100
[2] Mayo F.R. (1948) J. Am. Chem. Soc., 70: 3689
[3] Freidlina R.Kh., Chukovskaya E.C. (1974) Synthesis, 10: 447
[4] Assher M., Vofsi D. (1963) J. Chem. Soc., 1887
[5] T.Sasaki, M.Tada, C.Zhong (2008) J. Mol. Cat. A, 279: 200-209
[6] Yohey Oe, Yasuhiro Uozumi (2008) Adv. Synth. Catal. 350: 1771-1775
[7] J.M.Munoz-Molina, W.M.C. Sameera, E.Alvarez (2011) Inorg.Chem. 50: 2458-2467
[8] L.G. Hun, L. Nondek (1987) Coll. Czech. Chem. Commun., 52: 1758
[9] R. Davis, N.M.S. Khazal, T.E. Bitterwolf (1990) J. of Organomet. Chem., 397: 51
[10] W.J. Bland, R. Davis, J.L.A. Durrant (1985) J. of Organomet. Chem., 280: 397
[11] R.A.Gossage, L.A.Van de Kuil, G.Koten (1998) Acc.Chem.Res. 31: 423-431.
[12] L. Forti, F.Ghelfi, U.M.Pagnoni(1997) Tetrahedron. 53: 4419-4426
[13] H. Uegaki, Y. Kotani, M. Kamigaito, M. Sawamoto (1997) Macromol., 30: 2249
[14] C. Granel, Ph. Dubois, R. Jérôme, Ph. Theyssié (1996) Macromol., 29: 8576.
[15] J.S. Wang, K. Matyjaszewski (1995) J. of Amer. Chem. Soc., 117: 5614
[16] M. Bialek, H. Cramail, A. Deffieux, S.M. Guilaume (2005) Europ. Polym. J., 41: 2678
[17] T.Pintauer (2010) Eur. J. Inorg. Chem. 2449–2460.
[18] T.Sasaki, C.Zhong, M.Tada, Y.Iwasawa (2005) Chem. Comm.:2506
[19] Berendsen G.E., Pikaart K.A., de Galan L. (1980) J. Liq. Chromatogr., 1437-1442
[20] V.V.Smirnov , I.G.Tarkhanova, A.I.Kokorin, V.I.Pergushov, D.S.Tsvetkov (2005) Kinetics and Catalysis. 46: 65-71.
[21] V.V.Smirnov , I.G.Tarkhanova, A.I.Kokorin, M.G,Gantman, D.S.Tsvetkov (2005) Kinetics and Catalysis, 46: 72-76.
[22] V.V.Smirnov , I.G.Tarkhanova, A.I.Kokorin, D.S.Tsvetkov. (2005) Kinetics and Catalysis. 46: 861-866
[23] V.V.Smirnov , I.G.Tarkhanova, D.S.Tsvetkov (2007) Kinetics and Catalysis. 48: 271-275.
[24] J.A.Bertrand, E.Fujita, D.G.VanDerveer (1980) Inorg. Chem., 19: 2022-2028
[25] J.Jezierska, T.Gowiak, A.Ozarowski, Y.Y.Yablokov. (1998) Inorg.Chim.Acta. 275-276: 28-36.
[26] Y.Nishida, S.Kida (1976) J. Inorg. Nucl. Chem., 38: 451-457
[27] J.E. Wertz, J.R. Bolton (1972) Electron Spin Resonance. Elementary theory and practical applications. McGraw Hill Book, Company, N.-Y.
[28] Goodman B. A., Raynor J. B. (1970) Adv. Inorg. Chem. Radiochem., 13: 135-162.
[29] Yu. N. Molin, K. M. Salikhov, K. I. Zamaraev, (1980) Spin Exchange. Springer-Verlag, Berlin
[30] N.M.Kabanov, A.I.Kokorin, V.B.Rogacheva and A.B.Zezin (1979) Polymer Sci. USSR, 21: 230-240
[31] L.S. Molochnikov, B.K Radionov (1995) Russ. J. Phys. Chem., 69: 836.
[32] Goldanskii V.I., Herber R.H. (1968) Chemical application of Mossbauer spectroscopy. Academic Press. N.-Y – London.
[33] I.S.Akhrem, A.V.Orlinkov, М.Vol'pin.(1993) J. Chem. Soc., Chem. Commun.:671-672.
Cite This Article
  • APA Style

    I. G. Tarkhanova, A. I. Kokorin, M. G. Gantman, V. M. Zelikman, D. S. Tsvetkov. (2013). Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands. American Journal of Physical Chemistry, 2(2), 24-32. https://doi.org/10.11648/j.ajpc.20130202.11

    Copy | Download

    ACS Style

    I. G. Tarkhanova; A. I. Kokorin; M. G. Gantman; V. M. Zelikman; D. S. Tsvetkov. Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands. Am. J. Phys. Chem. 2013, 2(2), 24-32. doi: 10.11648/j.ajpc.20130202.11

    Copy | Download

    AMA Style

    I. G. Tarkhanova, A. I. Kokorin, M. G. Gantman, V. M. Zelikman, D. S. Tsvetkov. Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands. Am J Phys Chem. 2013;2(2):24-32. doi: 10.11648/j.ajpc.20130202.11

    Copy | Download

  • @article{10.11648/j.ajpc.20130202.11,
      author = {I. G. Tarkhanova and A. I. Kokorin and M. G. Gantman and V. M. Zelikman and D. S. Tsvetkov},
      title = {Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands},
      journal = {American Journal of Physical Chemistry},
      volume = {2},
      number = {2},
      pages = {24-32},
      doi = {10.11648/j.ajpc.20130202.11},
      url = {https://doi.org/10.11648/j.ajpc.20130202.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20130202.11},
      abstract = {New catalytic systems for polyhalogenmethanes addition to olefins were obtained by immobilization of complexes of Cu, Co, Mn, V (in the vanadyl form) and Fe with bifunctional ligands of aminoalcohols (monoethanolamine), substituted aminoalcohols (N, N-diethylaminoethanol), hydroxyaminoacids (serine, hydroxyproline) on the oxide supports. For Cu, Co, Mn, V the extrem dependence of the catalyst activity on the surface concentration of metal was observed. For iron containing systems the mechanism of the process depends on the concentration of metal — at low concentration (1.3 wt. %) — Lewis acid centres. By means of ESR the structure of active sites of the anchored complexes at different metal concentration was stated on the example of copper containing systems. Complexes isolated on the surface of mineral support at the expanse of strong covalent bonding of one of the lignd groups with surface hydroxyls were the most active. Such a structure provides the formation of the surface complexes of divalent copper with four nitrogen atoms in the coordination sphere.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Kharash Reaction on Heterogenized Metal Complexes with Bifunctional Ligands
    AU  - I. G. Tarkhanova
    AU  - A. I. Kokorin
    AU  - M. G. Gantman
    AU  - V. M. Zelikman
    AU  - D. S. Tsvetkov
    Y1  - 2013/04/02
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ajpc.20130202.11
    DO  - 10.11648/j.ajpc.20130202.11
    T2  - American Journal of Physical Chemistry
    JF  - American Journal of Physical Chemistry
    JO  - American Journal of Physical Chemistry
    SP  - 24
    EP  - 32
    PB  - Science Publishing Group
    SN  - 2327-2449
    UR  - https://doi.org/10.11648/j.ajpc.20130202.11
    AB  - New catalytic systems for polyhalogenmethanes addition to olefins were obtained by immobilization of complexes of Cu, Co, Mn, V (in the vanadyl form) and Fe with bifunctional ligands of aminoalcohols (monoethanolamine), substituted aminoalcohols (N, N-diethylaminoethanol), hydroxyaminoacids (serine, hydroxyproline) on the oxide supports. For Cu, Co, Mn, V the extrem dependence of the catalyst activity on the surface concentration of metal was observed. For iron containing systems the mechanism of the process depends on the concentration of metal — at low concentration (1.3 wt. %) — Lewis acid centres. By means of ESR the structure of active sites of the anchored complexes at different metal concentration was stated on the example of copper containing systems. Complexes isolated on the surface of mineral support at the expanse of strong covalent bonding of one of the lignd groups with surface hydroxyls were the most active. Such a structure provides the formation of the surface complexes of divalent copper with four nitrogen atoms in the coordination sphere.
    VL  - 2
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • M. V. Lomonosov, Moscow State University, Russia, Moscow

  • N. N. Semenov Institution of the Chemical Physics, RAS, Russia, Moscow

  • M. V. Lomonosov, Moscow State University, Russia, Moscow

  • M. V. Lomonosov, Moscow State University, Russia, Moscow

  • M. V. Lomonosov, Moscow State University, Russia, Moscow

  • Sections