| Peer-Reviewed

Thermochemistry of Heteroatomic Compounds: Analysis and Calculation of Thermody-namic Functions of Amino Acids and Some Peptides of Different Space Structure

Published: 20 February 2013
Views:       Downloads:
Abstract

The values of free energies, the heats of combustion and formation in condensed and gaseous phases over 30 amino acids of different structure were analyzed. Entropies and heat capacities in standard conditions were considered too. Twenty one equations of such type as Yо = i ± f (N – g) +Σ(hc)j, in which Yо is thermodynamic function or heat capaci-ty, i and f are stoichiometric coefficiens, Σ(hc)j are the sums of the number (j) of the heat corrections for the mentioned thermodynamic magnitudes, N is the number of valence electrons, from which a number of lone electron pairs (g) is ex-cepted for. The obtained equations were used for the calculations of a new such parameters for four phosphorylated amino acids, two enkephalines and two human peptides of low molecular weights.

Published in American Journal of Physical Chemistry (Volume 2, Issue 1)
DOI 10.11648/j.ajpc.20130201.12
Page(s) 8-15
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2013. Published by Science Publishing Group

Keywords

Amino Acid, Free Energy of Combustion, Free Energy of Formation, Heat of Combustion Heat of Formation, Entropy, Heat Capacity, Enkephalines, Peptides

References
[1] Kharasch M.S. and Sher B., The electronic conception of valence and heats of combustion of organic compounds . J. Phys. Chem., 25: 625-658 (1925).
[2] Ovchinnikov V.V., Thermochemistry of Heteroatomic Com-pounds: Enthalpies of Combustion and Formation of Organic Derivatives of P, As, Sb and Bi. Doklady Phys. Chem., 411: 328-330 (2006).
[3] Ovchinnikov V.V., Thermochemistry of Heteroatomic Com-pounds: Calculation of Combustion and Formation Enthalpies of some Bioorganic Molecules of different Phenanthrenes Rows . Open J.Phys.Chem., 1: 1-5 (2011).
[4] Ovchinnikov V.V., Lapteva L.I., Thermochemistry of Hete-roatomic Compounds: the Heats of Combustion and Forma-tion of Clycoside and Adenosine Phosphates., Intern. J. Org. Chem., 1: 67-70 (2011).
[5] Ovchinnikov V.V., Thermochemistry of Heteroatomic Com-pounds: Enthalpy of Combustion and Formation of Organic Compounds of Groups I-VII Elements. Doklady Phys. Chem., 443: 69-72 (2012).
[6] Ovchinnikov V.V., Thermochemistry of Heteroatomic Com-pounds: Interdependence between of Some Thermochemical Parameters of the Different Classes Organic Nitro Com-pounds and a Number of Valence Electrons in their Mole-cules. American Chemical Science Journal, 3(1): 11-23 (2013).
[7] Metzler D.E., Biochemistry: The Chemical Reactions in Living Cells. Mir, Moscow, Vol.1, pp. 407 (1980).
[8] Metzler D.E., Metzler C.M., Sauke D.J., Biochemistry: The Chemical Reactions of Living Cells, Academic Press, 2nd Ed., pp. 1976 (2001).
[9] White A., Handler Ph., Smith E. L., Hill R.L., Lehman I.R., Principles of Biochemistry (Book 1). Moskow, Mir: 100-109 (1981).
[10] Ngauv S.N., Sabbah R. and Laffitte M., Thermodynamique de composes azotes. III. Etude thermochimique de la glycine et de la l-α-alanine, Thermochim. Acta, 20: 371- 380 (1977).
[11] Vasilev V.P., Borodin V.A. and Kopnyshev S.B., Calculation of the standard enthalpies of combustion and formation of crystalline organic acids and complexones from the energy contributions of atomic groups., Russ. J. Phys. Chem. (Engl. Transl.), 65: 29- 32 (1991).
[12] Hutchens J.O., Cole, A.G. and Stout J.W. Heat capacities from 11 to 305K. and entropies of L-alanine and glycine, J. Am. Chem. Soc., 82: 4813-4815 (1960).
[13] Skoulika S. and Sabbah R., Thermodynamique de composes azotes. X. Etude thermochimique de laquelqes acides w-amines, Thermochim. Acta, 61, 203-214 (1983).
[14] Badelin V.G., Kulikov O.V., Batagin V.S., Udzig E., Zielen-kiewicz A., Zielenkiewicz W. and Krestov G.A., Physico-chemical properties of peptides and their solutions, Thermo-chim. Acta, 169: 81-93(1990).
[15] Svec H.J. and Clyde D.D., Vapor pressures of some α-amino acids, J. Chem. Eng. Data, 10: 151 (1965).
[16] Cole A.G., Hutchens J.O.and Stout J.W., Heat capacities from 11 to 305°K. and entropies of L-phenylalanine, L-proline, L-tryptophane, and L-tyrosine. Some free energies of formation, J. Phys. Chem., 67: 1852-1855 (1963).
[17] Hutchens J.O., Cole A.G. and Stout J.W., Heat capacities from 11 to 305oK, entropies and free energies of formation of L-valine, L-isoleucine, and L-leucine, J. Phys. Chem., 67: 1128-1130 (1963).
[18] Huffman H.M., Ellis E.L. and Fox S.W., Thermal data. VI. The heats of combustion and free energies of seven organic compounds containing nitrogen, J. Am. Chem. Soc., 58: 1728-1733 (1936).
[19] Huffman H.M., Fox S.W. and Ellis E.L., Thermal data. VII. The heats of combustion of seven amino acids. Huffman, H.M., Fox, S.W., and Ellis, E.L. Thermal data. VII. The heats of combustion of seven amino acids, J. Am. Chem. Soc., 59: 2144- 2149 (1937).
[20] Tsuzuki T. and Hunt H., Heats of combustion. VI. The heats of combustion of some amino acids, J. Phys. Chem., 61: 1668 (1957).
[21] Sabbah R. and Laffitte M., Thermochimique de composes azotes. IV. Etude thermochimique de la sarcosine et de la l-proline, Bull. Soc. Chim. Fr., 1: 50-52 , (1978).
[22] Vasilev V.P., Borodin, V.A. and Kopnyshev S.B., Standard enthalpies of formation of L-histidine and L-proline, Russ. J. Phys. Chem. (Engl. Transl.), 63: 891-892 (1989).
[23] Wu D., Zhu Y., Gao Z. and Qu S., Determination of com-bustion heat of some amino acids. Wuhan Daxue Xuebao Ziran Kexueban: 78-82 (1993).
[24] Ponomarev V.V. and Migarskaya L.B., Heats of combustion of some amino- acids, Russ. J. Phys. Chem. (Engl. Transl.), 34: 1182-1183 (1960).
[25] Huffman H.M. and Borsook H., Thermal data. I. The heat capacities, entropies and free energies of seven organic compounds containing nitrogen, J. Am. Chem. Soc., 54: 4297- 4301 (1932).
[26] Stephenson R.M. and Malanowski S., Handbook of the Thermodynamics of Organic Compounds, Elsevier: New York (1987).
[27] Chickos J.S. and Acree W.E., Jr., Enthalpies of Sublimation of Organic and Organometallic Compounds 1910 - 2001, J.Phys.Chem.Ref. Data, (2): 537- 698 (2002).
[28] Wrede F., Uber die Bestimmung von Brennungswarten mit-tels der kalorimetrischen Bombe unter Benutzung des Pla-tinwiders- tandsthermometers, Z. Phys. Chem. (Leipzig): 81-94 (1911).
[29] Huffman H.M. and Fox S.W., Thermal data. XIII. The heat capacities and entropies of creatine hydrate, DL- citrulline, DL-ornitine, L-proline and taurine, J. Am. Chem. Soc., 62: 3464-3465 (1940).
[30] Tsuzuki T., Harper D.O. and Hunt H., Heats of combustion. VII. The heats of combustion of some amino acids, J. Phys. Chem., 62: 1594-1595 (1958).
[31] Spinr H.J. and Wadsö I., Thermochemistry of solutions of biochemical model compounds. 4. The partial molar heat capacities of some α- amino acids, J.Chem.Eng. Data,10: 151 (1965).
[32] Hutchens J.O., Cjle A.G. and Stout J.W., Heat capacities from 11 to 305 K, entropies, enthalpy, and free energy of formation of L-serine, J. Biol. Chem., 239: 4194- 4195 (1964).
[33] Sakiyama M. and Seki S., Enthalpies of combustion of or-ganic compounds. II. L- and D-glutamic acid, Bull. Chem. Soc. Jpn., 48: 2203-2204 (1975).
[34] Sabbah R. and Minidakis C., Thermodynamique de sub-stances soufree. II. Etude thermochimique de la l-cysteine et de la l-methionine, Thermochim. Acta, 43: 269-277(1981).
[35] Huffman H.M. and Ellis E.L., Thermal data. VII. The heat capacities, entropies and free energy of four organic com-pounds containing sulfur, J. Fm. Chem. Soc., 57: 46-48 (1935).
[36] Sunner S., Determination of combustion heats of organo-sulfur compounds, Svensk. Kim. Tidr., 58: 71-81 (1946).
[37] Huffman H.M., Thermal data. XV. The heats of combustion and free energies of some compounds containing the peptide bond, J. Phys. Chem., 46: 885- 889(1942).
[38] Huffman H.M., Thermal data. XIV. The heat capacities and entropies of some compounds having the peptide bond, J. Am. Chem. Soc., 63: 688-689 (1941).
[39] Fischer E. and Wrede F., Uber die Verbrennungswarme ei-niger organischer Verbindungen. Sitzungsber, Dtsch. Akad. Wiss. Berlin Kl. Math. Phys. Tech.: 687-715 (1904).
[40] Karapetyanz M. Kh. and Karapetyanz M.L., The basic thermodynamic constants of inorganic and organic substances, Moscow, Chemistry, 471pp. (1968).
[41] Greenstein J.P. and Winitz M., Chemistry of the amino acids, NY- London, John Wiley & Sons, Inc., 821 pp. (1961).
[42] Gragerov I.P., Pogorelyi V.K. and Franchuk I.F, Hydrogen bond and rapid exchange, Kiev, Naukova Dumka, 215 pp. (1978).
[43] Benson S.W., Thermochemical kinetics Moscow, Mir, 308 pp. (1971).
[44] Cox J.D. and Pilcher G., Thermochemistry of Organic and Organometallic Compounds, Academic Press - London and New York, pp. 640 (1970).
Cite This Article
  • APA Style

    Vitaly Vitalevich Ovchinnikov. (2013). Thermochemistry of Heteroatomic Compounds: Analysis and Calculation of Thermody-namic Functions of Amino Acids and Some Peptides of Different Space Structure. American Journal of Physical Chemistry, 2(1), 8-15. https://doi.org/10.11648/j.ajpc.20130201.12

    Copy | Download

    ACS Style

    Vitaly Vitalevich Ovchinnikov. Thermochemistry of Heteroatomic Compounds: Analysis and Calculation of Thermody-namic Functions of Amino Acids and Some Peptides of Different Space Structure. Am. J. Phys. Chem. 2013, 2(1), 8-15. doi: 10.11648/j.ajpc.20130201.12

    Copy | Download

    AMA Style

    Vitaly Vitalevich Ovchinnikov. Thermochemistry of Heteroatomic Compounds: Analysis and Calculation of Thermody-namic Functions of Amino Acids and Some Peptides of Different Space Structure. Am J Phys Chem. 2013;2(1):8-15. doi: 10.11648/j.ajpc.20130201.12

    Copy | Download

  • @article{10.11648/j.ajpc.20130201.12,
      author = {Vitaly Vitalevich Ovchinnikov},
      title = {Thermochemistry of Heteroatomic Compounds: Analysis and Calculation of Thermody-namic Functions of Amino Acids and Some Peptides of Different Space Structure},
      journal = {American Journal of Physical Chemistry},
      volume = {2},
      number = {1},
      pages = {8-15},
      doi = {10.11648/j.ajpc.20130201.12},
      url = {https://doi.org/10.11648/j.ajpc.20130201.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20130201.12},
      abstract = {The values of free energies, the heats of combustion and formation in condensed and gaseous phases over 30 amino acids of different structure were analyzed. Entropies and heat capacities in standard conditions were considered too. Twenty one equations of such type as Yо = i ± f (N – g) +Σ(hc)j, in which Yо is thermodynamic function or heat capaci-ty, i and f are stoichiometric coefficiens, Σ(hc)j are the sums of the number (j) of the heat corrections for the mentioned thermodynamic magnitudes, N is the number of valence electrons, from which a number of lone electron pairs (g) is ex-cepted for. The obtained equations were used for the calculations of a new such parameters for four phosphorylated amino acids, two enkephalines and two human peptides of low molecular weights.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Thermochemistry of Heteroatomic Compounds: Analysis and Calculation of Thermody-namic Functions of Amino Acids and Some Peptides of Different Space Structure
    AU  - Vitaly Vitalevich Ovchinnikov
    Y1  - 2013/02/20
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ajpc.20130201.12
    DO  - 10.11648/j.ajpc.20130201.12
    T2  - American Journal of Physical Chemistry
    JF  - American Journal of Physical Chemistry
    JO  - American Journal of Physical Chemistry
    SP  - 8
    EP  - 15
    PB  - Science Publishing Group
    SN  - 2327-2449
    UR  - https://doi.org/10.11648/j.ajpc.20130201.12
    AB  - The values of free energies, the heats of combustion and formation in condensed and gaseous phases over 30 amino acids of different structure were analyzed. Entropies and heat capacities in standard conditions were considered too. Twenty one equations of such type as Yо = i ± f (N – g) +Σ(hc)j, in which Yо is thermodynamic function or heat capaci-ty, i and f are stoichiometric coefficiens, Σ(hc)j are the sums of the number (j) of the heat corrections for the mentioned thermodynamic magnitudes, N is the number of valence electrons, from which a number of lone electron pairs (g) is ex-cepted for. The obtained equations were used for the calculations of a new such parameters for four phosphorylated amino acids, two enkephalines and two human peptides of low molecular weights.
    VL  - 2
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of General Chemistry and Ecology, Tupolev Kazan National Researching Technical University, St-K.Marks 10, 420111 Kazan, Tatarstan, Russia

  • Sections