In this paper, we consider features concerning approximation for data by using piecewise interpolation techniques. Numerical examples are given which compare piecewise cubic interpolation methods.
Published in | American Journal of Applied Mathematics (Volume 1, Issue 2) |
DOI | 10.11648/j.ajam.20130102.11 |
Page(s) | 24-27 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Piecewise, Cubic Bessel Interpolation, Cubic Hermite Interpolation, Cubic Interpolation
[1] | Tae-Wan Kim, Boris Kvasov, A shape-preserving approximation by weighted cubic splines, Journal of Computational And Applied Mathematics, 236 (2012) 4383–4397. |
[2] | İ.N. Askerzade Askerbeyli, Şahin Emrah Amrahov, Two approaches for fuzzy interpolation, Journal of Computing, 2010,2151-9617. |
[3] | F.N. Fritsch and R. E. Carlson, Monotone piecewise cubic interpolation, Siam J.Numer. Anal., 17(1980) 238-246 |
[4] | Carl de Boor, A Practical Guide to Splines, Applied Mathematical Sciences Vol. 27 |
[5] | Abbasbandy S. and Babolian E., Interpolation of fuzzy data by natural splines, Korean J. Comput. Appl. Math. 5 (1998) 457-463. |
[6] | Abbasbandy S., Interpolation of fuzzy data by complete splines, Korean J. Comput. Appl. Math. 8 (2001) 587-594. |
[7] | Akima H., A new method of interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Mech. 17(1970) 589-602. |
[8] | Yan Z. By., Piecewise cubic curve fitting algorithm, Math. of Comput. 49(1987) 203-213. |
[9] | Kershaw D. By., The orders of approximation of the first derivative of cubic splines at the knots, Math. of Comput. 26(1972) 191-198. |
[10] | Anderson L.E., And Elfving T., Interpolation and approximation by monotone cubic splines, Journal of Approximation Theory, 66(1991) 302-303. |
APA Style
Emine Can, Sabri Ali Ümekkan, Canan Köroğlu. (2013). Piecewise Cubic Approximation for Data. American Journal of Applied Mathematics, 1(2), 24-27. https://doi.org/10.11648/j.ajam.20130102.11
ACS Style
Emine Can; Sabri Ali Ümekkan; Canan Köroğlu. Piecewise Cubic Approximation for Data. Am. J. Appl. Math. 2013, 1(2), 24-27. doi: 10.11648/j.ajam.20130102.11
AMA Style
Emine Can, Sabri Ali Ümekkan, Canan Köroğlu. Piecewise Cubic Approximation for Data. Am J Appl Math. 2013;1(2):24-27. doi: 10.11648/j.ajam.20130102.11
@article{10.11648/j.ajam.20130102.11, author = {Emine Can and Sabri Ali Ümekkan and Canan Köroğlu}, title = {Piecewise Cubic Approximation for Data}, journal = {American Journal of Applied Mathematics}, volume = {1}, number = {2}, pages = {24-27}, doi = {10.11648/j.ajam.20130102.11}, url = {https://doi.org/10.11648/j.ajam.20130102.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajam.20130102.11}, abstract = {In this paper, we consider features concerning approximation for data by using piecewise interpolation techniques. Numerical examples are given which compare piecewise cubic interpolation methods.}, year = {2013} }
TY - JOUR T1 - Piecewise Cubic Approximation for Data AU - Emine Can AU - Sabri Ali Ümekkan AU - Canan Köroğlu Y1 - 2013/06/30 PY - 2013 N1 - https://doi.org/10.11648/j.ajam.20130102.11 DO - 10.11648/j.ajam.20130102.11 T2 - American Journal of Applied Mathematics JF - American Journal of Applied Mathematics JO - American Journal of Applied Mathematics SP - 24 EP - 27 PB - Science Publishing Group SN - 2330-006X UR - https://doi.org/10.11648/j.ajam.20130102.11 AB - In this paper, we consider features concerning approximation for data by using piecewise interpolation techniques. Numerical examples are given which compare piecewise cubic interpolation methods. VL - 1 IS - 2 ER -